Step |
Hyp |
Ref |
Expression |
1 |
|
padd0.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
padd0.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
3 |
|
uncom |
⊢ ( 𝑋 ∪ 𝑌 ) = ( 𝑌 ∪ 𝑋 ) |
4 |
3
|
a1i |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 ∪ 𝑌 ) = ( 𝑌 ∪ 𝑋 ) ) |
5 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝐾 ∈ Lat ) |
6 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝑋 ⊆ 𝐴 ) |
7 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝑞 ∈ 𝑋 ) |
8 |
6 7
|
sseldd |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝑞 ∈ 𝐴 ) |
9 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
10 |
9 1
|
atbase |
⊢ ( 𝑞 ∈ 𝐴 → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
11 |
8 10
|
syl |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
12 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝑌 ⊆ 𝐴 ) |
13 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝑟 ∈ 𝑌 ) |
14 |
12 13
|
sseldd |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝑟 ∈ 𝐴 ) |
15 |
9 1
|
atbase |
⊢ ( 𝑟 ∈ 𝐴 → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
16 |
14 15
|
syl |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → 𝑟 ∈ ( Base ‘ 𝐾 ) ) |
17 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
18 |
9 17
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑞 ∈ ( Base ‘ 𝐾 ) ∧ 𝑟 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) = ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ) |
19 |
5 11 16 18
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) = ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ) |
20 |
19
|
breq2d |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑞 ∈ 𝑋 ∧ 𝑟 ∈ 𝑌 ) ) → ( 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ↔ 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ) ) |
21 |
20
|
2rexbidva |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ) ) |
22 |
|
rexcom |
⊢ ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ↔ ∃ 𝑟 ∈ 𝑌 ∃ 𝑞 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ) |
23 |
21 22
|
bitrdi |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) ↔ ∃ 𝑟 ∈ 𝑌 ∃ 𝑞 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) ) ) |
24 |
23
|
rabbidv |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } = { 𝑝 ∈ 𝐴 ∣ ∃ 𝑟 ∈ 𝑌 ∃ 𝑞 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) } ) |
25 |
4 24
|
uneq12d |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) = ( ( 𝑌 ∪ 𝑋 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑟 ∈ 𝑌 ∃ 𝑞 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) } ) ) |
26 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
27 |
26 17 1 2
|
paddval |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ( le ‘ 𝐾 ) ( 𝑞 ( join ‘ 𝐾 ) 𝑟 ) } ) ) |
28 |
26 17 1 2
|
paddval |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑌 + 𝑋 ) = ( ( 𝑌 ∪ 𝑋 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑟 ∈ 𝑌 ∃ 𝑞 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) } ) ) |
29 |
28
|
3com23 |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑌 + 𝑋 ) = ( ( 𝑌 ∪ 𝑋 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑟 ∈ 𝑌 ∃ 𝑞 ∈ 𝑋 𝑝 ( le ‘ 𝐾 ) ( 𝑟 ( join ‘ 𝐾 ) 𝑞 ) } ) ) |
30 |
25 27 29
|
3eqtr4d |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑌 + 𝑋 ) ) |