| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddss.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
paddss.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
| 3 |
|
paddss.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 4 |
|
simpl |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → 𝐾 ∈ 𝐵 ) |
| 5 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → 𝑋 ⊆ 𝐴 ) |
| 6 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → 𝑌 ⊆ 𝐴 ) |
| 7 |
1 2
|
psubssat |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑍 ∈ 𝑆 ) → 𝑍 ⊆ 𝐴 ) |
| 8 |
7
|
3ad2antr3 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → 𝑍 ⊆ 𝐴 ) |
| 9 |
1 3
|
paddssw1 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) → ( 𝑋 + 𝑌 ) ⊆ ( 𝑍 + 𝑍 ) ) ) |
| 10 |
4 5 6 8 9
|
syl13anc |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) → ( 𝑋 + 𝑌 ) ⊆ ( 𝑍 + 𝑍 ) ) ) |
| 11 |
2 3
|
paddidm |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑍 ∈ 𝑆 ) → ( 𝑍 + 𝑍 ) = 𝑍 ) |
| 12 |
11
|
3ad2antr3 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( 𝑍 + 𝑍 ) = 𝑍 ) |
| 13 |
12
|
sseq2d |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝑋 + 𝑌 ) ⊆ ( 𝑍 + 𝑍 ) ↔ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) ) |
| 14 |
10 13
|
sylibd |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) → ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) ) |
| 15 |
1 3
|
paddssw2 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) ⊆ 𝑍 → ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) ) ) |
| 16 |
4 5 6 8 15
|
syl13anc |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝑋 + 𝑌 ) ⊆ 𝑍 → ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) ) ) |
| 17 |
14 16
|
impbid |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ∈ 𝑆 ) ) → ( ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) ↔ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) ) |