Step |
Hyp |
Ref |
Expression |
1 |
|
padd0.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
padd0.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
3 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → 𝐾 ∈ 𝐵 ) |
4 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → 𝑌 ⊆ 𝐴 ) |
5 |
|
sstr |
⊢ ( ( 𝑍 ⊆ 𝑊 ∧ 𝑊 ⊆ 𝐴 ) → 𝑍 ⊆ 𝐴 ) |
6 |
5
|
ancoms |
⊢ ( ( 𝑊 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝑊 ) → 𝑍 ⊆ 𝐴 ) |
7 |
6
|
ad2ant2l |
⊢ ( ( ( 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → 𝑍 ⊆ 𝐴 ) |
8 |
7
|
3adantl1 |
⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → 𝑍 ⊆ 𝐴 ) |
9 |
3 4 8
|
3jca |
⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) |
10 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → 𝑋 ⊆ 𝑌 ) |
11 |
1 2
|
paddss1 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( 𝑋 ⊆ 𝑌 → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑍 ) ) ) |
12 |
9 10 11
|
sylc |
⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑍 ) ) |
13 |
1 2
|
paddss2 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑊 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑍 ⊆ 𝑊 → ( 𝑌 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) ) |
14 |
13
|
3com23 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) → ( 𝑍 ⊆ 𝑊 → ( 𝑌 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) ) |
15 |
14
|
imp |
⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ 𝑍 ⊆ 𝑊 ) → ( 𝑌 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) |
16 |
15
|
adantrl |
⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → ( 𝑌 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) |
17 |
12 16
|
sstrd |
⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) ∧ ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) ) → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) |
18 |
17
|
ex |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑊 ⊆ 𝐴 ) → ( ( 𝑋 ⊆ 𝑌 ∧ 𝑍 ⊆ 𝑊 ) → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) ) |