Metamath Proof Explorer


Theorem paddss12

Description: Subset law for projective subspace sum. ( unss12 analog.) (Contributed by NM, 7-Mar-2012)

Ref Expression
Hypotheses padd0.a 𝐴 = ( Atoms ‘ 𝐾 )
padd0.p + = ( +𝑃𝐾 )
Assertion paddss12 ( ( 𝐾𝐵𝑌𝐴𝑊𝐴 ) → ( ( 𝑋𝑌𝑍𝑊 ) → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) )

Proof

Step Hyp Ref Expression
1 padd0.a 𝐴 = ( Atoms ‘ 𝐾 )
2 padd0.p + = ( +𝑃𝐾 )
3 simpl1 ( ( ( 𝐾𝐵𝑌𝐴𝑊𝐴 ) ∧ ( 𝑋𝑌𝑍𝑊 ) ) → 𝐾𝐵 )
4 simpl2 ( ( ( 𝐾𝐵𝑌𝐴𝑊𝐴 ) ∧ ( 𝑋𝑌𝑍𝑊 ) ) → 𝑌𝐴 )
5 sstr ( ( 𝑍𝑊𝑊𝐴 ) → 𝑍𝐴 )
6 5 ancoms ( ( 𝑊𝐴𝑍𝑊 ) → 𝑍𝐴 )
7 6 ad2ant2l ( ( ( 𝑌𝐴𝑊𝐴 ) ∧ ( 𝑋𝑌𝑍𝑊 ) ) → 𝑍𝐴 )
8 7 3adantl1 ( ( ( 𝐾𝐵𝑌𝐴𝑊𝐴 ) ∧ ( 𝑋𝑌𝑍𝑊 ) ) → 𝑍𝐴 )
9 3 4 8 3jca ( ( ( 𝐾𝐵𝑌𝐴𝑊𝐴 ) ∧ ( 𝑋𝑌𝑍𝑊 ) ) → ( 𝐾𝐵𝑌𝐴𝑍𝐴 ) )
10 simprl ( ( ( 𝐾𝐵𝑌𝐴𝑊𝐴 ) ∧ ( 𝑋𝑌𝑍𝑊 ) ) → 𝑋𝑌 )
11 1 2 paddss1 ( ( 𝐾𝐵𝑌𝐴𝑍𝐴 ) → ( 𝑋𝑌 → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑍 ) ) )
12 9 10 11 sylc ( ( ( 𝐾𝐵𝑌𝐴𝑊𝐴 ) ∧ ( 𝑋𝑌𝑍𝑊 ) ) → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑍 ) )
13 1 2 paddss2 ( ( 𝐾𝐵𝑊𝐴𝑌𝐴 ) → ( 𝑍𝑊 → ( 𝑌 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) )
14 13 3com23 ( ( 𝐾𝐵𝑌𝐴𝑊𝐴 ) → ( 𝑍𝑊 → ( 𝑌 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) )
15 14 imp ( ( ( 𝐾𝐵𝑌𝐴𝑊𝐴 ) ∧ 𝑍𝑊 ) → ( 𝑌 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) )
16 15 adantrl ( ( ( 𝐾𝐵𝑌𝐴𝑊𝐴 ) ∧ ( 𝑋𝑌𝑍𝑊 ) ) → ( 𝑌 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) )
17 12 16 sstrd ( ( ( 𝐾𝐵𝑌𝐴𝑊𝐴 ) ∧ ( 𝑋𝑌𝑍𝑊 ) ) → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) )
18 17 ex ( ( 𝐾𝐵𝑌𝐴𝑊𝐴 ) → ( ( 𝑋𝑌𝑍𝑊 ) → ( 𝑋 + 𝑍 ) ⊆ ( 𝑌 + 𝑊 ) ) )