Description: Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | paddssw.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| paddssw.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | ||
| Assertion | paddssw1 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) → ( 𝑋 + 𝑌 ) ⊆ ( 𝑍 + 𝑍 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | paddssw.a | ⊢ 𝐴 = ( Atoms ‘ 𝐾 ) | |
| 2 | paddssw.p | ⊢ + = ( +𝑃 ‘ 𝐾 ) | |
| 3 | simpl | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝐾 ∈ 𝐵 ) | |
| 4 | simpr3 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑍 ⊆ 𝐴 ) | |
| 5 | 1 2 | paddss12 | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑍 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) → ( ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) → ( 𝑋 + 𝑌 ) ⊆ ( 𝑍 + 𝑍 ) ) ) |
| 6 | 3 4 4 5 | syl3anc | ⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) → ( 𝑋 + 𝑌 ) ⊆ ( 𝑍 + 𝑍 ) ) ) |