Metamath Proof Explorer


Theorem paddssw1

Description: Subset law for projective subspace sum valid for all subsets of atoms. (Contributed by NM, 14-Mar-2012)

Ref Expression
Hypotheses paddssw.a 𝐴 = ( Atoms ‘ 𝐾 )
paddssw.p + = ( +𝑃𝐾 )
Assertion paddssw1 ( ( 𝐾𝐵 ∧ ( 𝑋𝐴𝑌𝐴𝑍𝐴 ) ) → ( ( 𝑋𝑍𝑌𝑍 ) → ( 𝑋 + 𝑌 ) ⊆ ( 𝑍 + 𝑍 ) ) )

Proof

Step Hyp Ref Expression
1 paddssw.a 𝐴 = ( Atoms ‘ 𝐾 )
2 paddssw.p + = ( +𝑃𝐾 )
3 simpl ( ( 𝐾𝐵 ∧ ( 𝑋𝐴𝑌𝐴𝑍𝐴 ) ) → 𝐾𝐵 )
4 simpr3 ( ( 𝐾𝐵 ∧ ( 𝑋𝐴𝑌𝐴𝑍𝐴 ) ) → 𝑍𝐴 )
5 1 2 paddss12 ( ( 𝐾𝐵𝑍𝐴𝑍𝐴 ) → ( ( 𝑋𝑍𝑌𝑍 ) → ( 𝑋 + 𝑌 ) ⊆ ( 𝑍 + 𝑍 ) ) )
6 3 4 4 5 syl3anc ( ( 𝐾𝐵 ∧ ( 𝑋𝐴𝑌𝐴𝑍𝐴 ) ) → ( ( 𝑋𝑍𝑌𝑍 ) → ( 𝑋 + 𝑌 ) ⊆ ( 𝑍 + 𝑍 ) ) )