| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paddssw.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 2 |
|
paddssw.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
| 3 |
1 2
|
sspadd1 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → 𝑋 ⊆ ( 𝑋 + 𝑌 ) ) |
| 4 |
3
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑋 ⊆ ( 𝑋 + 𝑌 ) ) |
| 5 |
|
sstr |
⊢ ( ( 𝑋 ⊆ ( 𝑋 + 𝑌 ) ∧ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) → 𝑋 ⊆ 𝑍 ) |
| 6 |
4 5
|
sylan |
⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) → 𝑋 ⊆ 𝑍 ) |
| 7 |
6
|
ex |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) ⊆ 𝑍 → 𝑋 ⊆ 𝑍 ) ) |
| 8 |
|
simpl |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝐾 ∈ 𝐵 ) |
| 9 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑌 ⊆ 𝐴 ) |
| 10 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑋 ⊆ 𝐴 ) |
| 11 |
1 2
|
sspadd2 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴 ) → 𝑌 ⊆ ( 𝑋 + 𝑌 ) ) |
| 12 |
8 9 10 11
|
syl3anc |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑌 ⊆ ( 𝑋 + 𝑌 ) ) |
| 13 |
|
sstr |
⊢ ( ( 𝑌 ⊆ ( 𝑋 + 𝑌 ) ∧ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) → 𝑌 ⊆ 𝑍 ) |
| 14 |
12 13
|
sylan |
⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) → 𝑌 ⊆ 𝑍 ) |
| 15 |
14
|
ex |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) ⊆ 𝑍 → 𝑌 ⊆ 𝑍 ) ) |
| 16 |
7 15
|
jcad |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) ⊆ 𝑍 → ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) ) ) |