Step |
Hyp |
Ref |
Expression |
1 |
|
paddssw.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
paddssw.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
3 |
1 2
|
sspadd1 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → 𝑋 ⊆ ( 𝑋 + 𝑌 ) ) |
4 |
3
|
3adant3r3 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑋 ⊆ ( 𝑋 + 𝑌 ) ) |
5 |
|
sstr |
⊢ ( ( 𝑋 ⊆ ( 𝑋 + 𝑌 ) ∧ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) → 𝑋 ⊆ 𝑍 ) |
6 |
4 5
|
sylan |
⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) → 𝑋 ⊆ 𝑍 ) |
7 |
6
|
ex |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) ⊆ 𝑍 → 𝑋 ⊆ 𝑍 ) ) |
8 |
|
simpl |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝐾 ∈ 𝐵 ) |
9 |
|
simpr2 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑌 ⊆ 𝐴 ) |
10 |
|
simpr1 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑋 ⊆ 𝐴 ) |
11 |
1 2
|
sspadd2 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑋 ⊆ 𝐴 ) → 𝑌 ⊆ ( 𝑋 + 𝑌 ) ) |
12 |
8 9 10 11
|
syl3anc |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → 𝑌 ⊆ ( 𝑋 + 𝑌 ) ) |
13 |
|
sstr |
⊢ ( ( 𝑌 ⊆ ( 𝑋 + 𝑌 ) ∧ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) → 𝑌 ⊆ 𝑍 ) |
14 |
12 13
|
sylan |
⊢ ( ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) ∧ ( 𝑋 + 𝑌 ) ⊆ 𝑍 ) → 𝑌 ⊆ 𝑍 ) |
15 |
14
|
ex |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) ⊆ 𝑍 → 𝑌 ⊆ 𝑍 ) ) |
16 |
7 15
|
jcad |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ ( 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ∧ 𝑍 ⊆ 𝐴 ) ) → ( ( 𝑋 + 𝑌 ) ⊆ 𝑍 → ( 𝑋 ⊆ 𝑍 ∧ 𝑌 ⊆ 𝑍 ) ) ) |