| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							paddun.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							paddun.p | 
							⊢  +   =  ( +𝑃 ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							paddun.o | 
							⊢  ⊥   =  ( ⊥𝑃 ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							simp1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝐾  ∈  HL )  | 
						
						
							| 5 | 
							
								1 2
							 | 
							paddssat | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( 𝑆  +  𝑇 )  ⊆  𝐴 )  | 
						
						
							| 6 | 
							
								1 2
							 | 
							paddunssN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( 𝑆  ∪  𝑇 )  ⊆  ( 𝑆  +  𝑇 ) )  | 
						
						
							| 7 | 
							
								1 3
							 | 
							polcon3N | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑆  +  𝑇 )  ⊆  𝐴  ∧  ( 𝑆  ∪  𝑇 )  ⊆  ( 𝑆  +  𝑇 ) )  →  (  ⊥  ‘ ( 𝑆  +  𝑇 ) )  ⊆  (  ⊥  ‘ ( 𝑆  ∪  𝑇 ) ) )  | 
						
						
							| 8 | 
							
								4 5 6 7
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ ( 𝑆  +  𝑇 ) )  ⊆  (  ⊥  ‘ ( 𝑆  ∪  𝑇 ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							hlclat | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  CLat )  | 
						
						
							| 10 | 
							
								9
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝐾  ∈  CLat )  | 
						
						
							| 11 | 
							
								
							 | 
							unss | 
							⊢ ( ( 𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  ↔  ( 𝑆  ∪  𝑇 )  ⊆  𝐴 )  | 
						
						
							| 12 | 
							
								11
							 | 
							biimpi | 
							⊢ ( ( 𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( 𝑆  ∪  𝑇 )  ⊆  𝐴 )  | 
						
						
							| 13 | 
							
								12
							 | 
							3adant1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( 𝑆  ∪  𝑇 )  ⊆  𝐴 )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 )  | 
						
						
							| 15 | 
							
								14 1
							 | 
							atssbase | 
							⊢ 𝐴  ⊆  ( Base ‘ 𝐾 )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							sstrdi | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( 𝑆  ∪  𝑇 )  ⊆  ( Base ‘ 𝐾 ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							⊢ ( lub ‘ 𝐾 )  =  ( lub ‘ 𝐾 )  | 
						
						
							| 18 | 
							
								14 17
							 | 
							clatlubcl | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  ( 𝑆  ∪  𝑇 )  ⊆  ( Base ‘ 𝐾 ) )  →  ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 19 | 
							
								10 16 18
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 20 | 
							
								
							 | 
							eqid | 
							⊢ ( pmap ‘ 𝐾 )  =  ( pmap ‘ 𝐾 )  | 
						
						
							| 21 | 
							
								14 20
							 | 
							pmapssbaN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) )  ⊆  ( Base ‘ 𝐾 ) )  | 
						
						
							| 22 | 
							
								4 19 21
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) )  ⊆  ( Base ‘ 𝐾 ) )  | 
						
						
							| 23 | 
							
								1 3
							 | 
							polssatN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴 )  →  (  ⊥  ‘ 𝑆 )  ⊆  𝐴 )  | 
						
						
							| 24 | 
							
								23
							 | 
							3adant3 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ 𝑆 )  ⊆  𝐴 )  | 
						
						
							| 25 | 
							
								1 3
							 | 
							polssatN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  (  ⊥  ‘ 𝑆 )  ⊆  𝐴 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ⊆  𝐴 )  | 
						
						
							| 26 | 
							
								4 24 25
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ⊆  𝐴 )  | 
						
						
							| 27 | 
							
								1 3
							 | 
							polssatN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ 𝑇 )  ⊆  𝐴 )  | 
						
						
							| 28 | 
							
								27
							 | 
							3adant2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ 𝑇 )  ⊆  𝐴 )  | 
						
						
							| 29 | 
							
								1 3
							 | 
							polssatN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  (  ⊥  ‘ 𝑇 )  ⊆  𝐴 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) )  ⊆  𝐴 )  | 
						
						
							| 30 | 
							
								4 28 29
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) )  ⊆  𝐴 )  | 
						
						
							| 31 | 
							
								4 26 30
							 | 
							3jca | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( 𝐾  ∈  HL  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ⊆  𝐴  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) )  ⊆  𝐴 ) )  | 
						
						
							| 32 | 
							
								1 3
							 | 
							2polssN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴 )  →  𝑆  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  | 
						
						
							| 33 | 
							
								32
							 | 
							3adant3 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝑆  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) ) )  | 
						
						
							| 34 | 
							
								1 3
							 | 
							2polssN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑇  ⊆  𝐴 )  →  𝑇  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							3adant2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝑇  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) ) )  | 
						
						
							| 36 | 
							
								33 35
							 | 
							jca | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( 𝑆  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ∧  𝑇  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) ) ) )  | 
						
						
							| 37 | 
							
								1 2
							 | 
							paddss12 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ⊆  𝐴  ∧  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) )  ⊆  𝐴 )  →  ( ( 𝑆  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  ∧  𝑇  ⊆  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) ) )  →  ( 𝑆  +  𝑇 )  ⊆  ( (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  +  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) ) ) ) )  | 
						
						
							| 38 | 
							
								31 36 37
							 | 
							sylc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( 𝑆  +  𝑇 )  ⊆  ( (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  +  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) ) ) )  | 
						
						
							| 39 | 
							
								17 1 20 3
							 | 
							2polvalN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							3adant3 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ) )  | 
						
						
							| 41 | 
							
								17 1 20 3
							 | 
							2polvalN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							3adant2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) )  | 
						
						
							| 43 | 
							
								40 42
							 | 
							oveq12d | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( (  ⊥  ‘ (  ⊥  ‘ 𝑆 ) )  +  (  ⊥  ‘ (  ⊥  ‘ 𝑇 ) ) )  =  ( ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) )  +  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) )  | 
						
						
							| 44 | 
							
								38 43
							 | 
							sseqtrd | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( 𝑆  +  𝑇 )  ⊆  ( ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) )  +  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) )  | 
						
						
							| 45 | 
							
								
							 | 
							hllat | 
							⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat )  | 
						
						
							| 46 | 
							
								45
							 | 
							3ad2ant1 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝐾  ∈  Lat )  | 
						
						
							| 47 | 
							
								
							 | 
							simp2 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝑆  ⊆  𝐴 )  | 
						
						
							| 48 | 
							
								47 15
							 | 
							sstrdi | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝑆  ⊆  ( Base ‘ 𝐾 ) )  | 
						
						
							| 49 | 
							
								14 17
							 | 
							clatlubcl | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  ( Base ‘ 𝐾 ) )  →  ( ( lub ‘ 𝐾 ) ‘ 𝑆 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 50 | 
							
								10 48 49
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( lub ‘ 𝐾 ) ‘ 𝑆 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 51 | 
							
								
							 | 
							simp3 | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝑇  ⊆  𝐴 )  | 
						
						
							| 52 | 
							
								51 15
							 | 
							sstrdi | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  𝑇  ⊆  ( Base ‘ 𝐾 ) )  | 
						
						
							| 53 | 
							
								14 17
							 | 
							clatlubcl | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑇  ⊆  ( Base ‘ 𝐾 ) )  →  ( ( lub ‘ 𝐾 ) ‘ 𝑇 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 54 | 
							
								10 52 53
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( lub ‘ 𝐾 ) ‘ 𝑇 )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 55 | 
							
								
							 | 
							eqid | 
							⊢ ( join ‘ 𝐾 )  =  ( join ‘ 𝐾 )  | 
						
						
							| 56 | 
							
								14 55 20 2
							 | 
							pmapjoin | 
							⊢ ( ( 𝐾  ∈  Lat  ∧  ( ( lub ‘ 𝐾 ) ‘ 𝑆 )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( lub ‘ 𝐾 ) ‘ 𝑇 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) )  +  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) )  ⊆  ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) )  | 
						
						
							| 57 | 
							
								46 50 54 56
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) )  +  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) )  ⊆  ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) )  | 
						
						
							| 58 | 
							
								44 57
							 | 
							sstrd | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( 𝑆  +  𝑇 )  ⊆  ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) )  | 
						
						
							| 59 | 
							
								14 55 17
							 | 
							lubun | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  𝑆  ⊆  ( Base ‘ 𝐾 )  ∧  𝑇  ⊆  ( Base ‘ 𝐾 ) )  →  ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) )  =  ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) )  | 
						
						
							| 60 | 
							
								10 48 52 59
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) )  =  ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							fveq2d | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( ( lub ‘ 𝐾 ) ‘ 𝑆 ) ( join ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ 𝑇 ) ) ) )  | 
						
						
							| 62 | 
							
								58 61
							 | 
							sseqtrrd | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( 𝑆  +  𝑇 )  ⊆  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) )  | 
						
						
							| 63 | 
							
								
							 | 
							eqid | 
							⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 )  | 
						
						
							| 64 | 
							
								14 63 17
							 | 
							lubss | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) )  ⊆  ( Base ‘ 𝐾 )  ∧  ( 𝑆  +  𝑇 )  ⊆  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) )  →  ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  +  𝑇 ) ) ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) ) )  | 
						
						
							| 65 | 
							
								10 22 62 64
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  +  𝑇 ) ) ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) ) )  | 
						
						
							| 66 | 
							
								5 15
							 | 
							sstrdi | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( 𝑆  +  𝑇 )  ⊆  ( Base ‘ 𝐾 ) )  | 
						
						
							| 67 | 
							
								14 17
							 | 
							clatlubcl | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  ( 𝑆  +  𝑇 )  ⊆  ( Base ‘ 𝐾 ) )  →  ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  +  𝑇 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 68 | 
							
								10 66 67
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  +  𝑇 ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 69 | 
							
								14 17
							 | 
							clatlubcl | 
							⊢ ( ( 𝐾  ∈  CLat  ∧  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) )  ⊆  ( Base ‘ 𝐾 ) )  →  ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 70 | 
							
								10 22 69
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) )  ∈  ( Base ‘ 𝐾 ) )  | 
						
						
							| 71 | 
							
								14 63 20
							 | 
							pmaple | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  +  𝑇 ) )  ∈  ( Base ‘ 𝐾 )  ∧  ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  +  𝑇 ) ) ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) )  ↔  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  +  𝑇 ) ) )  ⊆  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) ) ) ) )  | 
						
						
							| 72 | 
							
								4 68 70 71
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  +  𝑇 ) ) ( le ‘ 𝐾 ) ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) )  ↔  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  +  𝑇 ) ) )  ⊆  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) ) ) ) )  | 
						
						
							| 73 | 
							
								65 72
							 | 
							mpbid | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  +  𝑇 ) ) )  ⊆  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) ) ) )  | 
						
						
							| 74 | 
							
								17 1 20 3
							 | 
							2polvalN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑆  +  𝑇 )  ⊆  𝐴 )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝑆  +  𝑇 ) ) )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  +  𝑇 ) ) ) )  | 
						
						
							| 75 | 
							
								4 5 74
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝑆  +  𝑇 ) ) )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  +  𝑇 ) ) ) )  | 
						
						
							| 76 | 
							
								17 1 20 3
							 | 
							2polvalN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑆  ∪  𝑇 )  ⊆  𝐴 )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝑆  ∪  𝑇 ) ) )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) )  | 
						
						
							| 77 | 
							
								4 13 76
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝑆  ∪  𝑇 ) ) )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) )  | 
						
						
							| 78 | 
							
								17 1 20
							 | 
							2pmaplubN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑆  ∪  𝑇 )  ⊆  𝐴 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) ) )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) )  | 
						
						
							| 79 | 
							
								4 13 78
							 | 
							syl2anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) ) )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) )  | 
						
						
							| 80 | 
							
								77 79
							 | 
							eqtr4d | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝑆  ∪  𝑇 ) ) )  =  ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( ( pmap ‘ 𝐾 ) ‘ ( ( lub ‘ 𝐾 ) ‘ ( 𝑆  ∪  𝑇 ) ) ) ) ) )  | 
						
						
							| 81 | 
							
								73 75 80
							 | 
							3sstr4d | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ (  ⊥  ‘ ( 𝑆  +  𝑇 ) ) )  ⊆  (  ⊥  ‘ (  ⊥  ‘ ( 𝑆  ∪  𝑇 ) ) ) )  | 
						
						
							| 82 | 
							
								1 3
							 | 
							2polcon4bN | 
							⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑆  +  𝑇 )  ⊆  𝐴  ∧  ( 𝑆  ∪  𝑇 )  ⊆  𝐴 )  →  ( (  ⊥  ‘ (  ⊥  ‘ ( 𝑆  +  𝑇 ) ) )  ⊆  (  ⊥  ‘ (  ⊥  ‘ ( 𝑆  ∪  𝑇 ) ) )  ↔  (  ⊥  ‘ ( 𝑆  ∪  𝑇 ) )  ⊆  (  ⊥  ‘ ( 𝑆  +  𝑇 ) ) ) )  | 
						
						
							| 83 | 
							
								4 5 13 82
							 | 
							syl3anc | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  ( (  ⊥  ‘ (  ⊥  ‘ ( 𝑆  +  𝑇 ) ) )  ⊆  (  ⊥  ‘ (  ⊥  ‘ ( 𝑆  ∪  𝑇 ) ) )  ↔  (  ⊥  ‘ ( 𝑆  ∪  𝑇 ) )  ⊆  (  ⊥  ‘ ( 𝑆  +  𝑇 ) ) ) )  | 
						
						
							| 84 | 
							
								81 83
							 | 
							mpbid | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ ( 𝑆  ∪  𝑇 ) )  ⊆  (  ⊥  ‘ ( 𝑆  +  𝑇 ) ) )  | 
						
						
							| 85 | 
							
								8 84
							 | 
							eqssd | 
							⊢ ( ( 𝐾  ∈  HL  ∧  𝑆  ⊆  𝐴  ∧  𝑇  ⊆  𝐴 )  →  (  ⊥  ‘ ( 𝑆  +  𝑇 ) )  =  (  ⊥  ‘ ( 𝑆  ∪  𝑇 ) ) )  |