Step |
Hyp |
Ref |
Expression |
1 |
|
paddfval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
paddfval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
paddfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
paddfval.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
|
biid |
⊢ ( 𝐾 ∈ 𝐵 ↔ 𝐾 ∈ 𝐵 ) |
6 |
3
|
fvexi |
⊢ 𝐴 ∈ V |
7 |
6
|
elpw2 |
⊢ ( 𝑋 ∈ 𝒫 𝐴 ↔ 𝑋 ⊆ 𝐴 ) |
8 |
6
|
elpw2 |
⊢ ( 𝑌 ∈ 𝒫 𝐴 ↔ 𝑌 ⊆ 𝐴 ) |
9 |
1 2 3 4
|
paddfval |
⊢ ( 𝐾 ∈ 𝐵 → + = ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) ) |
10 |
9
|
oveqd |
⊢ ( 𝐾 ∈ 𝐵 → ( 𝑋 + 𝑌 ) = ( 𝑋 ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) 𝑌 ) ) |
11 |
10
|
3ad2ant1 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 + 𝑌 ) = ( 𝑋 ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) 𝑌 ) ) |
12 |
|
simpl |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → 𝑋 ∈ 𝒫 𝐴 ) |
13 |
|
simpr |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → 𝑌 ∈ 𝒫 𝐴 ) |
14 |
|
unexg |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ∪ 𝑌 ) ∈ V ) |
15 |
6
|
rabex |
⊢ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ∈ V |
16 |
|
unexg |
⊢ ( ( ( 𝑋 ∪ 𝑌 ) ∈ V ∧ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ∈ V ) → ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ∈ V ) |
17 |
14 15 16
|
sylancl |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ∈ V ) |
18 |
12 13 17
|
3jca |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ∧ ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ∈ V ) ) |
19 |
18
|
3adant1 |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ∧ ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ∈ V ) ) |
20 |
|
uneq1 |
⊢ ( 𝑚 = 𝑋 → ( 𝑚 ∪ 𝑛 ) = ( 𝑋 ∪ 𝑛 ) ) |
21 |
|
rexeq |
⊢ ( 𝑚 = 𝑋 → ( ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
22 |
21
|
rabbidv |
⊢ ( 𝑚 = 𝑋 → { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } = { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) |
23 |
20 22
|
uneq12d |
⊢ ( 𝑚 = 𝑋 → ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) = ( ( 𝑋 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
24 |
|
uneq2 |
⊢ ( 𝑛 = 𝑌 → ( 𝑋 ∪ 𝑛 ) = ( 𝑋 ∪ 𝑌 ) ) |
25 |
|
rexeq |
⊢ ( 𝑛 = 𝑌 → ( ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
26 |
25
|
rexbidv |
⊢ ( 𝑛 = 𝑌 → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
27 |
26
|
rabbidv |
⊢ ( 𝑛 = 𝑌 → { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } = { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) |
28 |
24 27
|
uneq12d |
⊢ ( 𝑛 = 𝑌 → ( ( 𝑋 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
29 |
|
eqid |
⊢ ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) = ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
30 |
23 28 29
|
ovmpog |
⊢ ( ( 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ∧ ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ∈ V ) → ( 𝑋 ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
31 |
19 30
|
syl |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 ( 𝑚 ∈ 𝒫 𝐴 , 𝑛 ∈ 𝒫 𝐴 ↦ ( ( 𝑚 ∪ 𝑛 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑚 ∃ 𝑟 ∈ 𝑛 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
32 |
11 31
|
eqtrd |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ∈ 𝒫 𝐴 ∧ 𝑌 ∈ 𝒫 𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
33 |
5 7 8 32
|
syl3anbr |
⊢ ( ( 𝐾 ∈ 𝐵 ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) → ( 𝑋 + 𝑌 ) = ( ( 𝑋 ∪ 𝑌 ) ∪ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |