Metamath Proof Explorer


Theorem paddval0

Description: Projective subspace sum with at least one empty set. (Contributed by NM, 11-Jan-2012)

Ref Expression
Hypotheses padd0.a 𝐴 = ( Atoms ‘ 𝐾 )
padd0.p + = ( +𝑃𝐾 )
Assertion paddval0 ( ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) ∧ ¬ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑋 + 𝑌 ) = ( 𝑋𝑌 ) )

Proof

Step Hyp Ref Expression
1 padd0.a 𝐴 = ( Atoms ‘ 𝐾 )
2 padd0.p + = ( +𝑃𝐾 )
3 1 2 elpadd0 ( ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) ∧ ¬ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑞 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑞𝑋𝑞𝑌 ) ) )
4 elun ( 𝑞 ∈ ( 𝑋𝑌 ) ↔ ( 𝑞𝑋𝑞𝑌 ) )
5 3 4 bitr4di ( ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) ∧ ¬ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑞 ∈ ( 𝑋 + 𝑌 ) ↔ 𝑞 ∈ ( 𝑋𝑌 ) ) )
6 5 eqrdv ( ( ( 𝐾𝐵𝑋𝐴𝑌𝐴 ) ∧ ¬ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑋 + 𝑌 ) = ( 𝑋𝑌 ) )