Metamath Proof Explorer


Theorem paddvaln0N

Description: Projective subspace sum operation value for nonempty sets. (Contributed by NM, 27-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses paddfval.l = ( le ‘ 𝐾 )
paddfval.j = ( join ‘ 𝐾 )
paddfval.a 𝐴 = ( Atoms ‘ 𝐾 )
paddfval.p + = ( +𝑃𝐾 )
Assertion paddvaln0N ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑋 + 𝑌 ) = { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } )

Proof

Step Hyp Ref Expression
1 paddfval.l = ( le ‘ 𝐾 )
2 paddfval.j = ( join ‘ 𝐾 )
3 paddfval.a 𝐴 = ( Atoms ‘ 𝐾 )
4 paddfval.p + = ( +𝑃𝐾 )
5 1 2 3 4 elpaddn0 ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑠 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑠𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑠 ( 𝑞 𝑟 ) ) ) )
6 breq1 ( 𝑝 = 𝑠 → ( 𝑝 ( 𝑞 𝑟 ) ↔ 𝑠 ( 𝑞 𝑟 ) ) )
7 6 2rexbidv ( 𝑝 = 𝑠 → ( ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) ↔ ∃ 𝑞𝑋𝑟𝑌 𝑠 ( 𝑞 𝑟 ) ) )
8 7 elrab ( 𝑠 ∈ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ↔ ( 𝑠𝐴 ∧ ∃ 𝑞𝑋𝑟𝑌 𝑠 ( 𝑞 𝑟 ) ) )
9 5 8 bitr4di ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑠 ∈ ( 𝑋 + 𝑌 ) ↔ 𝑠 ∈ { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } ) )
10 9 eqrdv ( ( ( 𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑋 + 𝑌 ) = { 𝑝𝐴 ∣ ∃ 𝑞𝑋𝑟𝑌 𝑝 ( 𝑞 𝑟 ) } )