Step |
Hyp |
Ref |
Expression |
1 |
|
paddfval.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
2 |
|
paddfval.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
3 |
|
paddfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
4 |
|
paddfval.p |
⊢ + = ( +𝑃 ‘ 𝐾 ) |
5 |
1 2 3 4
|
elpaddn0 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑠 ∈ ( 𝑋 + 𝑌 ) ↔ ( 𝑠 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑠 ≤ ( 𝑞 ∨ 𝑟 ) ) ) ) |
6 |
|
breq1 |
⊢ ( 𝑝 = 𝑠 → ( 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ 𝑠 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
7 |
6
|
2rexbidv |
⊢ ( 𝑝 = 𝑠 → ( ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) ↔ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑠 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
8 |
7
|
elrab |
⊢ ( 𝑠 ∈ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ↔ ( 𝑠 ∈ 𝐴 ∧ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑠 ≤ ( 𝑞 ∨ 𝑟 ) ) ) |
9 |
5 8
|
bitr4di |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑠 ∈ ( 𝑋 + 𝑌 ) ↔ 𝑠 ∈ { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) ) |
10 |
9
|
eqrdv |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑌 ⊆ 𝐴 ) ∧ ( 𝑋 ≠ ∅ ∧ 𝑌 ≠ ∅ ) ) → ( 𝑋 + 𝑌 ) = { 𝑝 ∈ 𝐴 ∣ ∃ 𝑞 ∈ 𝑋 ∃ 𝑟 ∈ 𝑌 𝑝 ≤ ( 𝑞 ∨ 𝑟 ) } ) |