| Step |
Hyp |
Ref |
Expression |
| 1 |
|
paireqne.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
paireqne.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑉 ) |
| 3 |
|
paireqne.p |
⊢ 𝑃 = { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } |
| 4 |
|
raleq |
⊢ ( 𝑝 = 𝑞 → ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
| 5 |
4
|
reu8 |
⊢ ( ∃! 𝑝 ∈ 𝑃 ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ∃ 𝑝 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) ) |
| 6 |
3
|
eleq2i |
⊢ ( 𝑝 ∈ 𝑃 ↔ 𝑝 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 7 |
|
elss2prb |
⊢ ( 𝑝 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) |
| 8 |
6 7
|
bitri |
⊢ ( 𝑝 ∈ 𝑃 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) |
| 9 |
|
raleq |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ∀ 𝑥 ∈ { 𝑎 , 𝑏 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
| 10 |
|
vex |
⊢ 𝑎 ∈ V |
| 11 |
|
vex |
⊢ 𝑏 ∈ V |
| 12 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 = 𝐴 ↔ 𝑎 = 𝐴 ) ) |
| 13 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑎 → ( 𝑥 = 𝐵 ↔ 𝑎 = 𝐵 ) ) |
| 14 |
12 13
|
orbi12d |
⊢ ( 𝑥 = 𝑎 → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ) ) |
| 15 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑏 → ( 𝑥 = 𝐴 ↔ 𝑏 = 𝐴 ) ) |
| 16 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑏 → ( 𝑥 = 𝐵 ↔ 𝑏 = 𝐵 ) ) |
| 17 |
15 16
|
orbi12d |
⊢ ( 𝑥 = 𝑏 → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) |
| 18 |
10 11 14 17
|
ralpr |
⊢ ( ∀ 𝑥 ∈ { 𝑎 , 𝑏 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) |
| 19 |
9 18
|
bitrdi |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) ) |
| 20 |
|
eqeq1 |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( 𝑝 = 𝑞 ↔ { 𝑎 , 𝑏 } = 𝑞 ) ) |
| 21 |
20
|
imbi2d |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ↔ ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) ) ) |
| 22 |
21
|
ralbidv |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ↔ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) ) ) |
| 23 |
19 22
|
anbi12d |
⊢ ( 𝑝 = { 𝑎 , 𝑏 } → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) ↔ ( ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) ) ) ) |
| 24 |
23
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) ↔ ( ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) ) ) ) |
| 25 |
1 2
|
jca |
⊢ ( 𝜑 → ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) |
| 26 |
|
prelpwi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑉 ) |
| 27 |
25 26
|
syl |
⊢ ( 𝜑 → { 𝐴 , 𝐵 } ∈ 𝒫 𝑉 ) |
| 28 |
27
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑉 ) |
| 29 |
|
hashprg |
⊢ ( ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) → ( 𝑎 ≠ 𝑏 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
| 30 |
29
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑎 ≠ 𝑏 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
| 31 |
30
|
biimpd |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( 𝑎 ≠ 𝑏 → ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
| 32 |
31
|
com12 |
⊢ ( 𝑎 ≠ 𝑏 → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
| 33 |
32
|
adantr |
⊢ ( ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
| 34 |
33
|
impcom |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) |
| 35 |
34
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) |
| 36 |
|
eqtr3 |
⊢ ( ( 𝑏 = 𝐴 ∧ 𝑎 = 𝐴 ) → 𝑏 = 𝑎 ) |
| 37 |
|
eqneqall |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ≠ 𝑏 → ( 𝑝 = { 𝑎 , 𝑏 } → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
| 38 |
37
|
impd |
⊢ ( 𝑎 = 𝑏 → ( ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 39 |
38
|
a1d |
⊢ ( 𝑎 = 𝑏 → ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
| 40 |
39
|
impd |
⊢ ( 𝑎 = 𝑏 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 41 |
40
|
equcoms |
⊢ ( 𝑏 = 𝑎 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 42 |
36 41
|
syl |
⊢ ( ( 𝑏 = 𝐴 ∧ 𝑎 = 𝐴 ) → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 43 |
42
|
ex |
⊢ ( 𝑏 = 𝐴 → ( 𝑎 = 𝐴 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
| 44 |
|
preq12 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) |
| 45 |
44
|
eqcomd |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 46 |
45
|
a1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 47 |
46
|
expcom |
⊢ ( 𝑏 = 𝐵 → ( 𝑎 = 𝐴 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
| 48 |
43 47
|
jaoi |
⊢ ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) → ( 𝑎 = 𝐴 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
| 49 |
48
|
com12 |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
| 50 |
|
prcom |
⊢ { 𝑎 , 𝑏 } = { 𝑏 , 𝑎 } |
| 51 |
|
preq12 |
⊢ ( ( 𝑏 = 𝐴 ∧ 𝑎 = 𝐵 ) → { 𝑏 , 𝑎 } = { 𝐴 , 𝐵 } ) |
| 52 |
50 51
|
eqtrid |
⊢ ( ( 𝑏 = 𝐴 ∧ 𝑎 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) |
| 53 |
52
|
eqcomd |
⊢ ( ( 𝑏 = 𝐴 ∧ 𝑎 = 𝐵 ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 54 |
53
|
a1d |
⊢ ( ( 𝑏 = 𝐴 ∧ 𝑎 = 𝐵 ) → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 55 |
54
|
ex |
⊢ ( 𝑏 = 𝐴 → ( 𝑎 = 𝐵 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
| 56 |
|
eqtr3 |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑎 = 𝐵 ) → 𝑏 = 𝑎 ) |
| 57 |
56 41
|
syl |
⊢ ( ( 𝑏 = 𝐵 ∧ 𝑎 = 𝐵 ) → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 58 |
57
|
ex |
⊢ ( 𝑏 = 𝐵 → ( 𝑎 = 𝐵 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
| 59 |
55 58
|
jaoi |
⊢ ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) → ( 𝑎 = 𝐵 → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
| 60 |
59
|
com12 |
⊢ ( 𝑎 = 𝐵 → ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
| 61 |
49 60
|
jaoi |
⊢ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) → ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) ) |
| 62 |
61
|
imp |
⊢ ( ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) → ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) ) |
| 63 |
62
|
impcom |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → { 𝐴 , 𝐵 } = { 𝑎 , 𝑏 } ) |
| 64 |
63
|
fveqeq2d |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ↔ ( ♯ ‘ { 𝑎 , 𝑏 } ) = 2 ) ) |
| 65 |
35 64
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
| 66 |
28 65
|
jca |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( { 𝐴 , 𝐵 } ∈ 𝒫 𝑉 ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
| 67 |
3
|
eleq2i |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝑃 ↔ { 𝐴 , 𝐵 } ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 68 |
|
fveqeq2 |
⊢ ( 𝑥 = { 𝐴 , 𝐵 } → ( ( ♯ ‘ 𝑥 ) = 2 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
| 69 |
68
|
elrab |
⊢ ( { 𝐴 , 𝐵 } ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ( { 𝐴 , 𝐵 } ∈ 𝒫 𝑉 ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
| 70 |
67 69
|
bitri |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝑃 ↔ ( { 𝐴 , 𝐵 } ∈ 𝒫 𝑉 ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
| 71 |
66 70
|
sylibr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → { 𝐴 , 𝐵 } ∈ 𝑃 ) |
| 72 |
|
raleq |
⊢ ( 𝑞 = { 𝐴 , 𝐵 } → ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
| 73 |
|
eqeq2 |
⊢ ( 𝑞 = { 𝐴 , 𝐵 } → ( { 𝑎 , 𝑏 } = 𝑞 ↔ { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
| 74 |
72 73
|
imbi12d |
⊢ ( 𝑞 = { 𝐴 , 𝐵 } → ( ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) ↔ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
| 75 |
74
|
rspcv |
⊢ ( { 𝐴 , 𝐵 } ∈ 𝑃 → ( ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
| 76 |
71 75
|
syl |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
| 77 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝐴 ↔ 𝐴 = 𝐴 ) ) |
| 78 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 = 𝐵 ↔ 𝐴 = 𝐵 ) ) |
| 79 |
77 78
|
orbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ) ) |
| 80 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝐴 ↔ 𝐵 = 𝐴 ) ) |
| 81 |
|
eqeq1 |
⊢ ( 𝑥 = 𝐵 → ( 𝑥 = 𝐵 ↔ 𝐵 = 𝐵 ) ) |
| 82 |
80 81
|
orbi12d |
⊢ ( 𝑥 = 𝐵 → ( ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) ) |
| 83 |
79 82
|
ralprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ( ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) ) ) |
| 84 |
25 83
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ( ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) ) ) |
| 85 |
84
|
imbi1d |
⊢ ( 𝜑 → ( ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ↔ ( ( ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
| 86 |
85
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ↔ ( ( ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
| 87 |
|
eqid |
⊢ 𝐴 = 𝐴 |
| 88 |
87
|
orci |
⊢ ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) |
| 89 |
|
eqid |
⊢ 𝐵 = 𝐵 |
| 90 |
89
|
olci |
⊢ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) |
| 91 |
|
pm5.5 |
⊢ ( ( ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) → ( ( ( ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ↔ { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
| 92 |
88 90 91
|
mp2an |
⊢ ( ( ( ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ↔ { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) |
| 93 |
10 11
|
pm3.2i |
⊢ ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) |
| 94 |
|
preq12bg |
⊢ ( ( ( 𝑎 ∈ V ∧ 𝑏 ∈ V ) ∧ ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) ) → ( { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ↔ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∨ ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) ) ) ) |
| 95 |
93 25 94
|
sylancr |
⊢ ( 𝜑 → ( { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ↔ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∨ ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) ) ) ) |
| 96 |
95
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ↔ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∨ ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) ) ) ) |
| 97 |
96
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ↔ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∨ ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) ) ) ) |
| 98 |
|
eqeq12 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 = 𝑏 ↔ 𝐴 = 𝐵 ) ) |
| 99 |
98
|
necon3bid |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 ≠ 𝑏 ↔ 𝐴 ≠ 𝐵 ) ) |
| 100 |
99
|
biimpd |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( 𝑎 ≠ 𝑏 → 𝐴 ≠ 𝐵 ) ) |
| 101 |
|
eqeq12 |
⊢ ( ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) → ( 𝑎 = 𝑏 ↔ 𝐵 = 𝐴 ) ) |
| 102 |
101
|
necon3bid |
⊢ ( ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) → ( 𝑎 ≠ 𝑏 ↔ 𝐵 ≠ 𝐴 ) ) |
| 103 |
102
|
biimpd |
⊢ ( ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) → ( 𝑎 ≠ 𝑏 → 𝐵 ≠ 𝐴 ) ) |
| 104 |
|
necom |
⊢ ( 𝐴 ≠ 𝐵 ↔ 𝐵 ≠ 𝐴 ) |
| 105 |
103 104
|
imbitrrdi |
⊢ ( ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) → ( 𝑎 ≠ 𝑏 → 𝐴 ≠ 𝐵 ) ) |
| 106 |
100 105
|
jaoi |
⊢ ( ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∨ ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) ) → ( 𝑎 ≠ 𝑏 → 𝐴 ≠ 𝐵 ) ) |
| 107 |
106
|
com12 |
⊢ ( 𝑎 ≠ 𝑏 → ( ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∨ ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) ) → 𝐴 ≠ 𝐵 ) ) |
| 108 |
107
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) ∨ ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐴 ) ) → 𝐴 ≠ 𝐵 ) ) |
| 109 |
97 108
|
sylbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } → 𝐴 ≠ 𝐵 ) ) |
| 110 |
109
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } → 𝐴 ≠ 𝐵 ) ) |
| 111 |
92 110
|
biimtrid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( ( ( ( 𝐴 = 𝐴 ∨ 𝐴 = 𝐵 ) ∧ ( 𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) → 𝐴 ≠ 𝐵 ) ) |
| 112 |
86 111
|
sylbid |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) → 𝐴 ≠ 𝐵 ) ) |
| 113 |
76 112
|
syld |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) → ( ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) → 𝐴 ≠ 𝐵 ) ) |
| 114 |
113
|
ex |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) → ( ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) → 𝐴 ≠ 𝐵 ) ) ) |
| 115 |
114
|
impd |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ( ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ∧ ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝑎 , 𝑏 } = 𝑞 ) ) → 𝐴 ≠ 𝐵 ) ) |
| 116 |
24 115
|
sylbid |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) ) → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) → 𝐴 ≠ 𝐵 ) ) |
| 117 |
116
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) → 𝐴 ≠ 𝐵 ) ) ) |
| 118 |
117
|
rexlimdvva |
⊢ ( 𝜑 → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑝 = { 𝑎 , 𝑏 } ) → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) → 𝐴 ≠ 𝐵 ) ) ) |
| 119 |
8 118
|
biimtrid |
⊢ ( 𝜑 → ( 𝑝 ∈ 𝑃 → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) → 𝐴 ≠ 𝐵 ) ) ) |
| 120 |
119
|
imp |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) → 𝐴 ≠ 𝐵 ) ) |
| 121 |
120
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑝 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑞 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑞 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑞 ) ) → 𝐴 ≠ 𝐵 ) ) |
| 122 |
5 121
|
biimtrid |
⊢ ( 𝜑 → ( ∃! 𝑝 ∈ 𝑃 ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝐴 ≠ 𝐵 ) ) |
| 123 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ∈ 𝒫 𝑉 ) |
| 124 |
|
hashprg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉 ) → ( 𝐴 ≠ 𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
| 125 |
25 124
|
syl |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 ↔ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
| 126 |
125
|
biimpd |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
| 127 |
126
|
imp |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) |
| 128 |
123 127
|
jca |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( { 𝐴 , 𝐵 } ∈ 𝒫 𝑉 ∧ ( ♯ ‘ { 𝐴 , 𝐵 } ) = 2 ) ) |
| 129 |
128 70
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → { 𝐴 , 𝐵 } ∈ 𝑃 ) |
| 130 |
|
raleq |
⊢ ( 𝑝 = { 𝐴 , 𝐵 } → ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
| 131 |
|
eqeq1 |
⊢ ( 𝑝 = { 𝐴 , 𝐵 } → ( 𝑝 = 𝑦 ↔ { 𝐴 , 𝐵 } = 𝑦 ) ) |
| 132 |
131
|
imbi2d |
⊢ ( 𝑝 = { 𝐴 , 𝐵 } → ( ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑦 ) ↔ ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) |
| 133 |
132
|
ralbidv |
⊢ ( 𝑝 = { 𝐴 , 𝐵 } → ( ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑦 ) ↔ ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) |
| 134 |
130 133
|
anbi12d |
⊢ ( 𝑝 = { 𝐴 , 𝐵 } → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) ) |
| 135 |
134
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑝 = { 𝐴 , 𝐵 } ) → ( ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑦 ) ) ↔ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) ) |
| 136 |
|
vex |
⊢ 𝑥 ∈ V |
| 137 |
136
|
elpr |
⊢ ( 𝑥 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 138 |
137
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 } ↔ ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
| 139 |
138
|
biimpd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝑥 ∈ { 𝐴 , 𝐵 } → ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
| 140 |
139
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑥 ∈ { 𝐴 , 𝐵 } ) → ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 141 |
140
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 142 |
3
|
eleq2i |
⊢ ( 𝑦 ∈ 𝑃 ↔ 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ) |
| 143 |
|
elss2prb |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑉 ∣ ( ♯ ‘ 𝑥 ) = 2 } ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) |
| 144 |
142 143
|
bitri |
⊢ ( 𝑦 ∈ 𝑃 ↔ ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) |
| 145 |
|
prid1g |
⊢ ( 𝑎 ∈ 𝑉 → 𝑎 ∈ { 𝑎 , 𝑏 } ) |
| 146 |
145
|
ad2antrl |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑎 ∈ { 𝑎 , 𝑏 } ) |
| 147 |
146
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → 𝑎 ∈ { 𝑎 , 𝑏 } ) |
| 148 |
|
eleq2 |
⊢ ( 𝑦 = { 𝑎 , 𝑏 } → ( 𝑎 ∈ 𝑦 ↔ 𝑎 ∈ { 𝑎 , 𝑏 } ) ) |
| 149 |
148
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → ( 𝑎 ∈ 𝑦 ↔ 𝑎 ∈ { 𝑎 , 𝑏 } ) ) |
| 150 |
147 149
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → 𝑎 ∈ 𝑦 ) |
| 151 |
14
|
rspcv |
⊢ ( 𝑎 ∈ 𝑦 → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ) ) |
| 152 |
150 151
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ) ) |
| 153 |
|
prid2g |
⊢ ( 𝑏 ∈ 𝑉 → 𝑏 ∈ { 𝑎 , 𝑏 } ) |
| 154 |
153
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → 𝑏 ∈ { 𝑎 , 𝑏 } ) |
| 155 |
154
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → 𝑏 ∈ { 𝑎 , 𝑏 } ) |
| 156 |
|
eleq2 |
⊢ ( 𝑦 = { 𝑎 , 𝑏 } → ( 𝑏 ∈ 𝑦 ↔ 𝑏 ∈ { 𝑎 , 𝑏 } ) ) |
| 157 |
156
|
ad2antll |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → ( 𝑏 ∈ 𝑦 ↔ 𝑏 ∈ { 𝑎 , 𝑏 } ) ) |
| 158 |
155 157
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → 𝑏 ∈ 𝑦 ) |
| 159 |
17
|
rspcv |
⊢ ( 𝑏 ∈ 𝑦 → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) |
| 160 |
158 159
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ) ) |
| 161 |
|
simplrr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ∧ ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ) ) → 𝑦 = { 𝑎 , 𝑏 } ) |
| 162 |
|
eqtr3 |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐴 ) → 𝑎 = 𝑏 ) |
| 163 |
|
eqneqall |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ≠ 𝑏 → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
| 164 |
163
|
com12 |
⊢ ( 𝑎 ≠ 𝑏 → ( 𝑎 = 𝑏 → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
| 165 |
164
|
ad2antrl |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → ( 𝑎 = 𝑏 → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
| 166 |
165
|
com12 |
⊢ ( 𝑎 = 𝑏 → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
| 167 |
162 166
|
syl |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐴 ) → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
| 168 |
167
|
ex |
⊢ ( 𝑎 = 𝐴 → ( 𝑏 = 𝐴 → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
| 169 |
52
|
a1d |
⊢ ( ( 𝑏 = 𝐴 ∧ 𝑎 = 𝐵 ) → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
| 170 |
169
|
expcom |
⊢ ( 𝑎 = 𝐵 → ( 𝑏 = 𝐴 → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
| 171 |
168 170
|
jaoi |
⊢ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) → ( 𝑏 = 𝐴 → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
| 172 |
171
|
com12 |
⊢ ( 𝑏 = 𝐴 → ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
| 173 |
44
|
a1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑏 = 𝐵 ) → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
| 174 |
173
|
ex |
⊢ ( 𝑎 = 𝐴 → ( 𝑏 = 𝐵 → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
| 175 |
|
eqtr3 |
⊢ ( ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐵 ) → 𝑎 = 𝑏 ) |
| 176 |
175 166
|
syl |
⊢ ( ( 𝑎 = 𝐵 ∧ 𝑏 = 𝐵 ) → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
| 177 |
176
|
ex |
⊢ ( 𝑎 = 𝐵 → ( 𝑏 = 𝐵 → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
| 178 |
174 177
|
jaoi |
⊢ ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) → ( 𝑏 = 𝐵 → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
| 179 |
178
|
com12 |
⊢ ( 𝑏 = 𝐵 → ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
| 180 |
172 179
|
jaoi |
⊢ ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) → ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) ) |
| 181 |
180
|
imp |
⊢ ( ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ∧ ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ) → ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) ) |
| 182 |
181
|
impcom |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ∧ ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ) ) → { 𝑎 , 𝑏 } = { 𝐴 , 𝐵 } ) |
| 183 |
161 182
|
eqtr2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) ∧ ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) ∧ ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) ) ) → { 𝐴 , 𝐵 } = 𝑦 ) |
| 184 |
183
|
exp32 |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → ( ( 𝑏 = 𝐴 ∨ 𝑏 = 𝐵 ) → ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) |
| 185 |
160 184
|
syld |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → ( ( 𝑎 = 𝐴 ∨ 𝑎 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) |
| 186 |
152 185
|
mpdd |
⊢ ( ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) ∧ ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) ) → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) |
| 187 |
186
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ ( 𝑎 ∈ 𝑉 ∧ 𝑏 ∈ 𝑉 ) ) → ( ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) |
| 188 |
187
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( ∃ 𝑎 ∈ 𝑉 ∃ 𝑏 ∈ 𝑉 ( 𝑎 ≠ 𝑏 ∧ 𝑦 = { 𝑎 , 𝑏 } ) → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) |
| 189 |
144 188
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( 𝑦 ∈ 𝑃 → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) |
| 190 |
189
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) ∧ 𝑦 ∈ 𝑃 ) → ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) |
| 191 |
190
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) |
| 192 |
141 191
|
jca |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → { 𝐴 , 𝐵 } = 𝑦 ) ) ) |
| 193 |
129 135 192
|
rspcedvd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ∃ 𝑝 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑦 ) ) ) |
| 194 |
|
raleq |
⊢ ( 𝑝 = 𝑦 → ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
| 195 |
194
|
reu8 |
⊢ ( ∃! 𝑝 ∈ 𝑃 ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ ∃ 𝑝 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ∧ ∀ 𝑦 ∈ 𝑃 ( ∀ 𝑥 ∈ 𝑦 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) → 𝑝 = 𝑦 ) ) ) |
| 196 |
193 195
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ 𝐵 ) → ∃! 𝑝 ∈ 𝑃 ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) |
| 197 |
196
|
ex |
⊢ ( 𝜑 → ( 𝐴 ≠ 𝐵 → ∃! 𝑝 ∈ 𝑃 ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ) ) |
| 198 |
122 197
|
impbid |
⊢ ( 𝜑 → ( ∃! 𝑝 ∈ 𝑃 ∀ 𝑥 ∈ 𝑝 ( 𝑥 = 𝐴 ∨ 𝑥 = 𝐵 ) ↔ 𝐴 ≠ 𝐵 ) ) |