Metamath Proof Explorer


Theorem parteq1

Description: Equality theorem for partition. (Contributed by Peter Mazsa, 5-Oct-2021)

Ref Expression
Assertion parteq1 ( 𝑅 = 𝑆 → ( 𝑅 Part 𝐴𝑆 Part 𝐴 ) )

Proof

Step Hyp Ref Expression
1 disjdmqseqeq1 ( 𝑅 = 𝑆 → ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ↔ ( Disj 𝑆 ∧ ( dom 𝑆 / 𝑆 ) = 𝐴 ) ) )
2 dfpart2 ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )
3 dfpart2 ( 𝑆 Part 𝐴 ↔ ( Disj 𝑆 ∧ ( dom 𝑆 / 𝑆 ) = 𝐴 ) )
4 1 2 3 3bitr4g ( 𝑅 = 𝑆 → ( 𝑅 Part 𝐴𝑆 Part 𝐴 ) )