Description: Equality theorem for partition. (Contributed by Peter Mazsa, 5-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | parteq1 | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjdmqseqeq1 | ⊢ ( 𝑅 = 𝑆 → ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ↔ ( Disj 𝑆 ∧ ( dom 𝑆 / 𝑆 ) = 𝐴 ) ) ) | |
| 2 | dfpart2 | ⊢ ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) | |
| 3 | dfpart2 | ⊢ ( 𝑆 Part 𝐴 ↔ ( Disj 𝑆 ∧ ( dom 𝑆 / 𝑆 ) = 𝐴 ) ) | |
| 4 | 1 2 3 | 3bitr4g | ⊢ ( 𝑅 = 𝑆 → ( 𝑅 Part 𝐴 ↔ 𝑆 Part 𝐴 ) ) |