Metamath Proof Explorer


Theorem parteq12

Description: Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024)

Ref Expression
Assertion parteq12 ( ( 𝑅 = 𝑆𝐴 = 𝐵 ) → ( 𝑅 Part 𝐴𝑆 Part 𝐵 ) )

Proof

Step Hyp Ref Expression
1 parteq1 ( 𝑅 = 𝑆 → ( 𝑅 Part 𝐴𝑆 Part 𝐴 ) )
2 parteq2 ( 𝐴 = 𝐵 → ( 𝑆 Part 𝐴𝑆 Part 𝐵 ) )
3 1 2 sylan9bb ( ( 𝑅 = 𝑆𝐴 = 𝐵 ) → ( 𝑅 Part 𝐴𝑆 Part 𝐵 ) )