Description: Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | parteq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝑅 Part 𝐴 ↔ 𝑅 Part 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq2 | ⊢ ( 𝐴 = 𝐵 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐵 ) ) | |
2 | 1 | anbi2d | ⊢ ( 𝐴 = 𝐵 → ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ↔ ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐵 ) ) ) |
3 | dfpart2 | ⊢ ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ) | |
4 | dfpart2 | ⊢ ( 𝑅 Part 𝐵 ↔ ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐵 ) ) | |
5 | 2 3 4 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝑅 Part 𝐴 ↔ 𝑅 Part 𝐵 ) ) |