Metamath Proof Explorer


Theorem parteq2

Description: Equality theorem for partition. (Contributed by Peter Mazsa, 25-Jul-2024)

Ref Expression
Assertion parteq2 ( 𝐴 = 𝐵 → ( 𝑅 Part 𝐴𝑅 Part 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eqeq2 ( 𝐴 = 𝐵 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 ↔ ( dom 𝑅 / 𝑅 ) = 𝐵 ) )
2 1 anbi2d ( 𝐴 = 𝐵 → ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) ↔ ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐵 ) ) )
3 dfpart2 ( 𝑅 Part 𝐴 ↔ ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) )
4 dfpart2 ( 𝑅 Part 𝐵 ↔ ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐵 ) )
5 2 3 4 3bitr4g ( 𝐴 = 𝐵 → ( 𝑅 Part 𝐴𝑅 Part 𝐵 ) )