| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptun |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝐷 ) ) = ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝐷 ) ) ∪ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝐷 ) ) ) |
| 2 |
|
inundif |
⊢ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) = 𝐴 |
| 3 |
|
eqid |
⊢ if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝐷 ) = if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝐷 ) |
| 4 |
2 3
|
mpteq12i |
⊢ ( 𝑥 ∈ ( ( 𝐴 ∩ 𝐵 ) ∪ ( 𝐴 ∖ 𝐵 ) ) ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝐷 ) ) = ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝐷 ) ) |
| 5 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 6 |
5
|
iftrued |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) → if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝐷 ) = 𝐶 ) |
| 7 |
6
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝐷 ) ) = ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ 𝐶 ) |
| 8 |
|
eldifn |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → ¬ 𝑥 ∈ 𝐵 ) |
| 9 |
8
|
iffalsed |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) → if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝐷 ) = 𝐷 ) |
| 10 |
9
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝐷 ) ) = ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝐷 ) |
| 11 |
7 10
|
uneq12i |
⊢ ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝐷 ) ) ∪ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝐷 ) ) ) = ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ 𝐶 ) ∪ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝐷 ) ) |
| 12 |
1 4 11
|
3eqtr3i |
⊢ ( 𝑥 ∈ 𝐴 ↦ if ( 𝑥 ∈ 𝐵 , 𝐶 , 𝐷 ) ) = ( ( 𝑥 ∈ ( 𝐴 ∩ 𝐵 ) ↦ 𝐶 ) ∪ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↦ 𝐷 ) ) |