Metamath Proof Explorer


Theorem partim2

Description: Disjoint relation on its natural domain implies an equivalence relation on the cosets of the relation, on its natural domain, cf. partim . Lemma for petlem . (Contributed by Peter Mazsa, 17-Sep-2021)

Ref Expression
Assertion partim2 ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( EqvRel ≀ 𝑅 ∧ ( dom ≀ 𝑅 /𝑅 ) = 𝐴 ) )

Proof

Step Hyp Ref Expression
1 disjim ( Disj 𝑅 → EqvRel ≀ 𝑅 )
2 1 adantr ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → EqvRel ≀ 𝑅 )
3 disjdmqseq ( Disj 𝑅 → ( ( dom 𝑅 / 𝑅 ) = 𝐴 ↔ ( dom ≀ 𝑅 /𝑅 ) = 𝐴 ) )
4 3 biimpa ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( dom ≀ 𝑅 /𝑅 ) = 𝐴 )
5 2 4 jca ( ( Disj 𝑅 ∧ ( dom 𝑅 / 𝑅 ) = 𝐴 ) → ( EqvRel ≀ 𝑅 ∧ ( dom ≀ 𝑅 /𝑅 ) = 𝐴 ) )