Metamath Proof Explorer


Theorem partsuc

Description: Property of the partition. (Contributed by Peter Mazsa, 20-Sep-2024)

Ref Expression
Assertion partsuc ( ( ( 𝑅 ↾ suc 𝐴 ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) Part ( suc 𝐴 ∖ { 𝐴 } ) ↔ ( 𝑅𝐴 ) Part 𝐴 )

Proof

Step Hyp Ref Expression
1 ressucdifsn ( ( 𝑅 ↾ suc 𝐴 ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) = ( 𝑅𝐴 )
2 sucdifsn ( suc 𝐴 ∖ { 𝐴 } ) = 𝐴
3 parteq12 ( ( ( ( 𝑅 ↾ suc 𝐴 ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) = ( 𝑅𝐴 ) ∧ ( suc 𝐴 ∖ { 𝐴 } ) = 𝐴 ) → ( ( ( 𝑅 ↾ suc 𝐴 ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) Part ( suc 𝐴 ∖ { 𝐴 } ) ↔ ( 𝑅𝐴 ) Part 𝐴 ) )
4 1 2 3 mp2an ( ( ( 𝑅 ↾ suc 𝐴 ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) Part ( suc 𝐴 ∖ { 𝐴 } ) ↔ ( 𝑅𝐴 ) Part 𝐴 )