Description: Property of the partition. (Contributed by Peter Mazsa, 24-Jul-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | partsuc2 | ⊢ ( ( ( 𝑅 ↾ ( 𝐴 ∪ { 𝐴 } ) ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) Part ( ( 𝐴 ∪ { 𝐴 } ) ∖ { 𝐴 } ) ↔ ( 𝑅 ↾ 𝐴 ) Part 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ressucdifsn2 | ⊢ ( ( 𝑅 ↾ ( 𝐴 ∪ { 𝐴 } ) ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) = ( 𝑅 ↾ 𝐴 ) | |
2 | sucdifsn2 | ⊢ ( ( 𝐴 ∪ { 𝐴 } ) ∖ { 𝐴 } ) = 𝐴 | |
3 | parteq12 | ⊢ ( ( ( ( 𝑅 ↾ ( 𝐴 ∪ { 𝐴 } ) ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) = ( 𝑅 ↾ 𝐴 ) ∧ ( ( 𝐴 ∪ { 𝐴 } ) ∖ { 𝐴 } ) = 𝐴 ) → ( ( ( 𝑅 ↾ ( 𝐴 ∪ { 𝐴 } ) ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) Part ( ( 𝐴 ∪ { 𝐴 } ) ∖ { 𝐴 } ) ↔ ( 𝑅 ↾ 𝐴 ) Part 𝐴 ) ) | |
4 | 1 2 3 | mp2an | ⊢ ( ( ( 𝑅 ↾ ( 𝐴 ∪ { 𝐴 } ) ) ∖ ( 𝑅 ↾ { 𝐴 } ) ) Part ( ( 𝐴 ∪ { 𝐴 } ) ∖ { 𝐴 } ) ↔ ( 𝑅 ↾ 𝐴 ) Part 𝐴 ) |