| Step | Hyp | Ref | Expression | 
						
							| 1 |  | paste.1 | ⊢ 𝑋  =  ∪  𝐽 | 
						
							| 2 |  | paste.2 | ⊢ 𝑌  =  ∪  𝐾 | 
						
							| 3 |  | paste.4 | ⊢ ( 𝜑  →  𝐴  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 4 |  | paste.5 | ⊢ ( 𝜑  →  𝐵  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 5 |  | paste.6 | ⊢ ( 𝜑  →  ( 𝐴  ∪  𝐵 )  =  𝑋 ) | 
						
							| 6 |  | paste.7 | ⊢ ( 𝜑  →  𝐹 : 𝑋 ⟶ 𝑌 ) | 
						
							| 7 |  | paste.8 | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐽  ↾t  𝐴 )  Cn  𝐾 ) ) | 
						
							| 8 |  | paste.9 | ⊢ ( 𝜑  →  ( 𝐹  ↾  𝐵 )  ∈  ( ( 𝐽  ↾t  𝐵 )  Cn  𝐾 ) ) | 
						
							| 9 | 5 | ineq2d | ⊢ ( 𝜑  →  ( ( ◡ 𝐹  “  𝑦 )  ∩  ( 𝐴  ∪  𝐵 ) )  =  ( ( ◡ 𝐹  “  𝑦 )  ∩  𝑋 ) ) | 
						
							| 10 |  | indi | ⊢ ( ( ◡ 𝐹  “  𝑦 )  ∩  ( 𝐴  ∪  𝐵 ) )  =  ( ( ( ◡ 𝐹  “  𝑦 )  ∩  𝐴 )  ∪  ( ( ◡ 𝐹  “  𝑦 )  ∩  𝐵 ) ) | 
						
							| 11 | 6 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 12 |  | respreima | ⊢ ( Fun  𝐹  →  ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑦 )  =  ( ( ◡ 𝐹  “  𝑦 )  ∩  𝐴 ) ) | 
						
							| 13 |  | respreima | ⊢ ( Fun  𝐹  →  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑦 )  =  ( ( ◡ 𝐹  “  𝑦 )  ∩  𝐵 ) ) | 
						
							| 14 | 12 13 | uneq12d | ⊢ ( Fun  𝐹  →  ( ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑦 )  ∪  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑦 ) )  =  ( ( ( ◡ 𝐹  “  𝑦 )  ∩  𝐴 )  ∪  ( ( ◡ 𝐹  “  𝑦 )  ∩  𝐵 ) ) ) | 
						
							| 15 | 11 14 | syl | ⊢ ( 𝜑  →  ( ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑦 )  ∪  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑦 ) )  =  ( ( ( ◡ 𝐹  “  𝑦 )  ∩  𝐴 )  ∪  ( ( ◡ 𝐹  “  𝑦 )  ∩  𝐵 ) ) ) | 
						
							| 16 | 10 15 | eqtr4id | ⊢ ( 𝜑  →  ( ( ◡ 𝐹  “  𝑦 )  ∩  ( 𝐴  ∪  𝐵 ) )  =  ( ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑦 )  ∪  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑦 ) ) ) | 
						
							| 17 |  | imassrn | ⊢ ( ◡ 𝐹  “  𝑦 )  ⊆  ran  ◡ 𝐹 | 
						
							| 18 |  | dfdm4 | ⊢ dom  𝐹  =  ran  ◡ 𝐹 | 
						
							| 19 |  | fdm | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌  →  dom  𝐹  =  𝑋 ) | 
						
							| 20 | 18 19 | eqtr3id | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌  →  ran  ◡ 𝐹  =  𝑋 ) | 
						
							| 21 | 17 20 | sseqtrid | ⊢ ( 𝐹 : 𝑋 ⟶ 𝑌  →  ( ◡ 𝐹  “  𝑦 )  ⊆  𝑋 ) | 
						
							| 22 | 6 21 | syl | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  𝑦 )  ⊆  𝑋 ) | 
						
							| 23 |  | dfss2 | ⊢ ( ( ◡ 𝐹  “  𝑦 )  ⊆  𝑋  ↔  ( ( ◡ 𝐹  “  𝑦 )  ∩  𝑋 )  =  ( ◡ 𝐹  “  𝑦 ) ) | 
						
							| 24 | 22 23 | sylib | ⊢ ( 𝜑  →  ( ( ◡ 𝐹  “  𝑦 )  ∩  𝑋 )  =  ( ◡ 𝐹  “  𝑦 ) ) | 
						
							| 25 | 9 16 24 | 3eqtr3rd | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  𝑦 )  =  ( ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑦 )  ∪  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑦 ) ) ) | 
						
							| 26 | 25 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Clsd ‘ 𝐾 ) )  →  ( ◡ 𝐹  “  𝑦 )  =  ( ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑦 )  ∪  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑦 ) ) ) | 
						
							| 27 |  | cnclima | ⊢ ( ( ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐽  ↾t  𝐴 )  Cn  𝐾 )  ∧  𝑦  ∈  ( Clsd ‘ 𝐾 ) )  →  ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑦 )  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝐴 ) ) ) | 
						
							| 28 | 7 27 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Clsd ‘ 𝐾 ) )  →  ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑦 )  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝐴 ) ) ) | 
						
							| 29 |  | restcldr | ⊢ ( ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  ∧  ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑦 )  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝐴 ) ) )  →  ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑦 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 30 | 3 28 29 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Clsd ‘ 𝐾 ) )  →  ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑦 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 31 |  | cnclima | ⊢ ( ( ( 𝐹  ↾  𝐵 )  ∈  ( ( 𝐽  ↾t  𝐵 )  Cn  𝐾 )  ∧  𝑦  ∈  ( Clsd ‘ 𝐾 ) )  →  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑦 )  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝐵 ) ) ) | 
						
							| 32 | 8 31 | sylan | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Clsd ‘ 𝐾 ) )  →  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑦 )  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝐵 ) ) ) | 
						
							| 33 |  | restcldr | ⊢ ( ( 𝐵  ∈  ( Clsd ‘ 𝐽 )  ∧  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑦 )  ∈  ( Clsd ‘ ( 𝐽  ↾t  𝐵 ) ) )  →  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑦 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 34 | 4 32 33 | syl2an2r | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Clsd ‘ 𝐾 ) )  →  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑦 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 35 |  | uncld | ⊢ ( ( ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑦 )  ∈  ( Clsd ‘ 𝐽 )  ∧  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑦 )  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑦 )  ∪  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑦 ) )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 36 | 30 34 35 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Clsd ‘ 𝐾 ) )  →  ( ( ◡ ( 𝐹  ↾  𝐴 )  “  𝑦 )  ∪  ( ◡ ( 𝐹  ↾  𝐵 )  “  𝑦 ) )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 37 | 26 36 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  ( Clsd ‘ 𝐾 ) )  →  ( ◡ 𝐹  “  𝑦 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 38 | 37 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( Clsd ‘ 𝐾 ) ( ◡ 𝐹  “  𝑦 )  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 39 |  | cldrcl | ⊢ ( 𝐴  ∈  ( Clsd ‘ 𝐽 )  →  𝐽  ∈  Top ) | 
						
							| 40 | 3 39 | syl | ⊢ ( 𝜑  →  𝐽  ∈  Top ) | 
						
							| 41 |  | cntop2 | ⊢ ( ( 𝐹  ↾  𝐴 )  ∈  ( ( 𝐽  ↾t  𝐴 )  Cn  𝐾 )  →  𝐾  ∈  Top ) | 
						
							| 42 | 7 41 | syl | ⊢ ( 𝜑  →  𝐾  ∈  Top ) | 
						
							| 43 | 1 | toptopon | ⊢ ( 𝐽  ∈  Top  ↔  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 44 | 2 | toptopon | ⊢ ( 𝐾  ∈  Top  ↔  𝐾  ∈  ( TopOn ‘ 𝑌 ) ) | 
						
							| 45 |  | iscncl | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  ( TopOn ‘ 𝑌 ) )  →  ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑦  ∈  ( Clsd ‘ 𝐾 ) ( ◡ 𝐹  “  𝑦 )  ∈  ( Clsd ‘ 𝐽 ) ) ) ) | 
						
							| 46 | 43 44 45 | syl2anb | ⊢ ( ( 𝐽  ∈  Top  ∧  𝐾  ∈  Top )  →  ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑦  ∈  ( Clsd ‘ 𝐾 ) ( ◡ 𝐹  “  𝑦 )  ∈  ( Clsd ‘ 𝐽 ) ) ) ) | 
						
							| 47 | 40 42 46 | syl2anc | ⊢ ( 𝜑  →  ( 𝐹  ∈  ( 𝐽  Cn  𝐾 )  ↔  ( 𝐹 : 𝑋 ⟶ 𝑌  ∧  ∀ 𝑦  ∈  ( Clsd ‘ 𝐾 ) ( ◡ 𝐹  “  𝑦 )  ∈  ( Clsd ‘ 𝐽 ) ) ) ) | 
						
							| 48 | 6 38 47 | mpbir2and | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝐽  Cn  𝐾 ) ) |