Step |
Hyp |
Ref |
Expression |
1 |
|
patoms.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
patoms.z |
⊢ 0 = ( 0. ‘ 𝐾 ) |
3 |
|
patoms.c |
⊢ 𝐶 = ( ⋖ ‘ 𝐾 ) |
4 |
|
patoms.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
5 |
|
elex |
⊢ ( 𝐾 ∈ 𝐷 → 𝐾 ∈ V ) |
6 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = ( Base ‘ 𝐾 ) ) |
7 |
6 1
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( Base ‘ 𝑝 ) = 𝐵 ) |
8 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( ⋖ ‘ 𝑝 ) = ( ⋖ ‘ 𝐾 ) ) |
9 |
8 3
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( ⋖ ‘ 𝑝 ) = 𝐶 ) |
10 |
9
|
breqd |
⊢ ( 𝑝 = 𝐾 → ( ( 0. ‘ 𝑝 ) ( ⋖ ‘ 𝑝 ) 𝑥 ↔ ( 0. ‘ 𝑝 ) 𝐶 𝑥 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑝 = 𝐾 → ( 0. ‘ 𝑝 ) = ( 0. ‘ 𝐾 ) ) |
12 |
11 2
|
eqtr4di |
⊢ ( 𝑝 = 𝐾 → ( 0. ‘ 𝑝 ) = 0 ) |
13 |
12
|
breq1d |
⊢ ( 𝑝 = 𝐾 → ( ( 0. ‘ 𝑝 ) 𝐶 𝑥 ↔ 0 𝐶 𝑥 ) ) |
14 |
10 13
|
bitrd |
⊢ ( 𝑝 = 𝐾 → ( ( 0. ‘ 𝑝 ) ( ⋖ ‘ 𝑝 ) 𝑥 ↔ 0 𝐶 𝑥 ) ) |
15 |
7 14
|
rabeqbidv |
⊢ ( 𝑝 = 𝐾 → { 𝑥 ∈ ( Base ‘ 𝑝 ) ∣ ( 0. ‘ 𝑝 ) ( ⋖ ‘ 𝑝 ) 𝑥 } = { 𝑥 ∈ 𝐵 ∣ 0 𝐶 𝑥 } ) |
16 |
|
df-ats |
⊢ Atoms = ( 𝑝 ∈ V ↦ { 𝑥 ∈ ( Base ‘ 𝑝 ) ∣ ( 0. ‘ 𝑝 ) ( ⋖ ‘ 𝑝 ) 𝑥 } ) |
17 |
1
|
fvexi |
⊢ 𝐵 ∈ V |
18 |
17
|
rabex |
⊢ { 𝑥 ∈ 𝐵 ∣ 0 𝐶 𝑥 } ∈ V |
19 |
15 16 18
|
fvmpt |
⊢ ( 𝐾 ∈ V → ( Atoms ‘ 𝐾 ) = { 𝑥 ∈ 𝐵 ∣ 0 𝐶 𝑥 } ) |
20 |
4 19
|
eqtrid |
⊢ ( 𝐾 ∈ V → 𝐴 = { 𝑥 ∈ 𝐵 ∣ 0 𝐶 𝑥 } ) |
21 |
5 20
|
syl |
⊢ ( 𝐾 ∈ 𝐷 → 𝐴 = { 𝑥 ∈ 𝐵 ∣ 0 𝐶 𝑥 } ) |