| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pautset.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
| 2 |
|
pautset.m |
⊢ 𝑀 = ( PAut ‘ 𝐾 ) |
| 3 |
|
elex |
⊢ ( 𝐾 ∈ 𝐵 → 𝐾 ∈ V ) |
| 4 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( PSubSp ‘ 𝑘 ) = ( PSubSp ‘ 𝐾 ) ) |
| 5 |
4 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( PSubSp ‘ 𝑘 ) = 𝑆 ) |
| 6 |
5
|
f1oeq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 : ( PSubSp ‘ 𝑘 ) –1-1-onto→ ( PSubSp ‘ 𝑘 ) ↔ 𝑓 : 𝑆 –1-1-onto→ ( PSubSp ‘ 𝑘 ) ) ) |
| 7 |
|
f1oeq3 |
⊢ ( ( PSubSp ‘ 𝑘 ) = 𝑆 → ( 𝑓 : 𝑆 –1-1-onto→ ( PSubSp ‘ 𝑘 ) ↔ 𝑓 : 𝑆 –1-1-onto→ 𝑆 ) ) |
| 8 |
5 7
|
syl |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 : 𝑆 –1-1-onto→ ( PSubSp ‘ 𝑘 ) ↔ 𝑓 : 𝑆 –1-1-onto→ 𝑆 ) ) |
| 9 |
6 8
|
bitrd |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 : ( PSubSp ‘ 𝑘 ) –1-1-onto→ ( PSubSp ‘ 𝑘 ) ↔ 𝑓 : 𝑆 –1-1-onto→ 𝑆 ) ) |
| 10 |
5
|
raleqdv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑦 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 11 |
5 10
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ∀ 𝑦 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) ) |
| 12 |
9 11
|
anbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑓 : ( PSubSp ‘ 𝑘 ) –1-1-onto→ ( PSubSp ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ∀ 𝑦 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
| 13 |
12
|
abbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑓 ∣ ( 𝑓 : ( PSubSp ‘ 𝑘 ) –1-1-onto→ ( PSubSp ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ∀ 𝑦 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 14 |
|
df-pautN |
⊢ PAut = ( 𝑘 ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( PSubSp ‘ 𝑘 ) –1-1-onto→ ( PSubSp ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ∀ 𝑦 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 15 |
1
|
fvexi |
⊢ 𝑆 ∈ V |
| 16 |
15 15
|
mapval |
⊢ ( 𝑆 ↑m 𝑆 ) = { 𝑓 ∣ 𝑓 : 𝑆 ⟶ 𝑆 } |
| 17 |
|
ovex |
⊢ ( 𝑆 ↑m 𝑆 ) ∈ V |
| 18 |
16 17
|
eqeltrri |
⊢ { 𝑓 ∣ 𝑓 : 𝑆 ⟶ 𝑆 } ∈ V |
| 19 |
|
f1of |
⊢ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 → 𝑓 : 𝑆 ⟶ 𝑆 ) |
| 20 |
19
|
ss2abi |
⊢ { 𝑓 ∣ 𝑓 : 𝑆 –1-1-onto→ 𝑆 } ⊆ { 𝑓 ∣ 𝑓 : 𝑆 ⟶ 𝑆 } |
| 21 |
18 20
|
ssexi |
⊢ { 𝑓 ∣ 𝑓 : 𝑆 –1-1-onto→ 𝑆 } ∈ V |
| 22 |
|
simpl |
⊢ ( ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → 𝑓 : 𝑆 –1-1-onto→ 𝑆 ) |
| 23 |
22
|
ss2abi |
⊢ { 𝑓 ∣ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) } ⊆ { 𝑓 ∣ 𝑓 : 𝑆 –1-1-onto→ 𝑆 } |
| 24 |
21 23
|
ssexi |
⊢ { 𝑓 ∣ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) } ∈ V |
| 25 |
13 14 24
|
fvmpt |
⊢ ( 𝐾 ∈ V → ( PAut ‘ 𝐾 ) = { 𝑓 ∣ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 26 |
2 25
|
eqtrid |
⊢ ( 𝐾 ∈ V → 𝑀 = { 𝑓 ∣ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
| 27 |
3 26
|
syl |
⊢ ( 𝐾 ∈ 𝐵 → 𝑀 = { 𝑓 ∣ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) } ) |