Step |
Hyp |
Ref |
Expression |
1 |
|
pautset.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
2 |
|
pautset.m |
⊢ 𝑀 = ( PAut ‘ 𝐾 ) |
3 |
|
elex |
⊢ ( 𝐾 ∈ 𝐵 → 𝐾 ∈ V ) |
4 |
|
fveq2 |
⊢ ( 𝑘 = 𝐾 → ( PSubSp ‘ 𝑘 ) = ( PSubSp ‘ 𝐾 ) ) |
5 |
4 1
|
eqtr4di |
⊢ ( 𝑘 = 𝐾 → ( PSubSp ‘ 𝑘 ) = 𝑆 ) |
6 |
5
|
f1oeq2d |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 : ( PSubSp ‘ 𝑘 ) –1-1-onto→ ( PSubSp ‘ 𝑘 ) ↔ 𝑓 : 𝑆 –1-1-onto→ ( PSubSp ‘ 𝑘 ) ) ) |
7 |
|
f1oeq3 |
⊢ ( ( PSubSp ‘ 𝑘 ) = 𝑆 → ( 𝑓 : 𝑆 –1-1-onto→ ( PSubSp ‘ 𝑘 ) ↔ 𝑓 : 𝑆 –1-1-onto→ 𝑆 ) ) |
8 |
5 7
|
syl |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 : 𝑆 –1-1-onto→ ( PSubSp ‘ 𝑘 ) ↔ 𝑓 : 𝑆 –1-1-onto→ 𝑆 ) ) |
9 |
6 8
|
bitrd |
⊢ ( 𝑘 = 𝐾 → ( 𝑓 : ( PSubSp ‘ 𝑘 ) –1-1-onto→ ( PSubSp ‘ 𝑘 ) ↔ 𝑓 : 𝑆 –1-1-onto→ 𝑆 ) ) |
10 |
5
|
raleqdv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑦 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) ) |
11 |
5 10
|
raleqbidv |
⊢ ( 𝑘 = 𝐾 → ( ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ∀ 𝑦 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) ) |
12 |
9 11
|
anbi12d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝑓 : ( PSubSp ‘ 𝑘 ) –1-1-onto→ ( PSubSp ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ∀ 𝑦 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) ↔ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) ) ) |
13 |
12
|
abbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑓 ∣ ( 𝑓 : ( PSubSp ‘ 𝑘 ) –1-1-onto→ ( PSubSp ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ∀ 𝑦 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) } = { 𝑓 ∣ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
14 |
|
df-pautN |
⊢ PAut = ( 𝑘 ∈ V ↦ { 𝑓 ∣ ( 𝑓 : ( PSubSp ‘ 𝑘 ) –1-1-onto→ ( PSubSp ‘ 𝑘 ) ∧ ∀ 𝑥 ∈ ( PSubSp ‘ 𝑘 ) ∀ 𝑦 ∈ ( PSubSp ‘ 𝑘 ) ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
15 |
1
|
fvexi |
⊢ 𝑆 ∈ V |
16 |
15 15
|
mapval |
⊢ ( 𝑆 ↑m 𝑆 ) = { 𝑓 ∣ 𝑓 : 𝑆 ⟶ 𝑆 } |
17 |
|
ovex |
⊢ ( 𝑆 ↑m 𝑆 ) ∈ V |
18 |
16 17
|
eqeltrri |
⊢ { 𝑓 ∣ 𝑓 : 𝑆 ⟶ 𝑆 } ∈ V |
19 |
|
f1of |
⊢ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 → 𝑓 : 𝑆 ⟶ 𝑆 ) |
20 |
19
|
ss2abi |
⊢ { 𝑓 ∣ 𝑓 : 𝑆 –1-1-onto→ 𝑆 } ⊆ { 𝑓 ∣ 𝑓 : 𝑆 ⟶ 𝑆 } |
21 |
18 20
|
ssexi |
⊢ { 𝑓 ∣ 𝑓 : 𝑆 –1-1-onto→ 𝑆 } ∈ V |
22 |
|
simpl |
⊢ ( ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) → 𝑓 : 𝑆 –1-1-onto→ 𝑆 ) |
23 |
22
|
ss2abi |
⊢ { 𝑓 ∣ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) } ⊆ { 𝑓 ∣ 𝑓 : 𝑆 –1-1-onto→ 𝑆 } |
24 |
21 23
|
ssexi |
⊢ { 𝑓 ∣ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) } ∈ V |
25 |
13 14 24
|
fvmpt |
⊢ ( 𝐾 ∈ V → ( PAut ‘ 𝐾 ) = { 𝑓 ∣ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
26 |
2 25
|
eqtrid |
⊢ ( 𝐾 ∈ V → 𝑀 = { 𝑓 ∣ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) } ) |
27 |
3 26
|
syl |
⊢ ( 𝐾 ∈ 𝐵 → 𝑀 = { 𝑓 ∣ ( 𝑓 : 𝑆 –1-1-onto→ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ⊆ 𝑦 ↔ ( 𝑓 ‘ 𝑥 ) ⊆ ( 𝑓 ‘ 𝑦 ) ) ) } ) |