| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0z | ⊢ 0  ∈  ℤ | 
						
							| 2 |  | zq | ⊢ ( 0  ∈  ℤ  →  0  ∈  ℚ ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ 0  ∈  ℚ | 
						
							| 4 |  | iftrue | ⊢ ( 𝑟  =  0  →  if ( 𝑟  =  0 ,  +∞ ,  ( ℩ 𝑧 ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( 𝑟  =  ( 𝑥  /  𝑦 )  ∧  𝑧  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) ) )  =  +∞ ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑝  =  𝑃  ∧  𝑟  =  0 )  →  if ( 𝑟  =  0 ,  +∞ ,  ( ℩ 𝑧 ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( 𝑟  =  ( 𝑥  /  𝑦 )  ∧  𝑧  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) ) )  =  +∞ ) | 
						
							| 6 |  | df-pc | ⊢  pCnt   =  ( 𝑝  ∈  ℙ ,  𝑟  ∈  ℚ  ↦  if ( 𝑟  =  0 ,  +∞ ,  ( ℩ 𝑧 ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ ( 𝑟  =  ( 𝑥  /  𝑦 )  ∧  𝑧  =  ( sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑝 ↑ 𝑛 )  ∥  𝑥 } ,  ℝ ,   <  )  −  sup ( { 𝑛  ∈  ℕ0  ∣  ( 𝑝 ↑ 𝑛 )  ∥  𝑦 } ,  ℝ ,   <  ) ) ) ) ) ) | 
						
							| 7 |  | pnfex | ⊢ +∞  ∈  V | 
						
							| 8 | 5 6 7 | ovmpoa | ⊢ ( ( 𝑃  ∈  ℙ  ∧  0  ∈  ℚ )  →  ( 𝑃  pCnt  0 )  =  +∞ ) | 
						
							| 9 | 3 8 | mpan2 | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  pCnt  0 )  =  +∞ ) |