Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝐴 = 𝐵 → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) |
2 |
1
|
ralrimivw |
⊢ ( 𝐴 = 𝐵 → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) |
3 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
4 |
|
nn0z |
⊢ ( 𝐵 ∈ ℕ0 → 𝐵 ∈ ℤ ) |
5 |
|
zq |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ ) |
6 |
|
pcxcl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℝ* ) |
7 |
5 6
|
sylan2 |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℝ* ) |
8 |
|
zq |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℚ ) |
9 |
|
pcxcl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℚ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ* ) |
10 |
8 9
|
sylan2 |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℤ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ* ) |
11 |
7 10
|
anim12dan |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) → ( ( 𝑝 pCnt 𝐴 ) ∈ ℝ* ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℝ* ) ) |
12 |
|
xrletri3 |
⊢ ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℝ* ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℝ* ) → ( ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ∧ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
13 |
11 12
|
syl |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ) → ( ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ∧ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
14 |
13
|
ancoms |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ∧ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
15 |
14
|
ralbidva |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ∀ 𝑝 ∈ ℙ ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ∧ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
16 |
|
r19.26 |
⊢ ( ∀ 𝑝 ∈ ℙ ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ∧ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ↔ ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) |
17 |
15 16
|
bitrdi |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
18 |
|
pc2dvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
19 |
|
pc2dvds |
⊢ ( ( 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( 𝐵 ∥ 𝐴 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) |
20 |
19
|
ancoms |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐵 ∥ 𝐴 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) |
21 |
18 20
|
anbi12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴 ) ↔ ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐵 ) ≤ ( 𝑝 pCnt 𝐴 ) ) ) ) |
22 |
17 21
|
bitr4d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ( 𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴 ) ) ) |
23 |
3 4 22
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ↔ ( 𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴 ) ) ) |
24 |
|
dvdseq |
⊢ ( ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) ∧ ( 𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴 ) ) → 𝐴 = 𝐵 ) |
25 |
24
|
ex |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ( 𝐴 ∥ 𝐵 ∧ 𝐵 ∥ 𝐴 ) → 𝐴 = 𝐵 ) ) |
26 |
23 25
|
sylbid |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) → 𝐴 = 𝐵 ) ) |
27 |
2 26
|
impbid2 |
⊢ ( ( 𝐴 ∈ ℕ0 ∧ 𝐵 ∈ ℕ0 ) → ( 𝐴 = 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐵 ) ) ) |