Step |
Hyp |
Ref |
Expression |
1 |
|
pcdvdstr |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) → ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) |
2 |
1
|
ancoms |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) |
3 |
2
|
ralrimiva |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) |
4 |
3
|
3expia |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ 𝐵 → ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝐴 = 0 → ( 𝑝 pCnt 𝐴 ) = ( 𝑝 pCnt 0 ) ) |
6 |
5
|
breq1d |
⊢ ( 𝐴 = 0 → ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ↔ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
7 |
6
|
ralbidv |
⊢ ( 𝐴 = 0 → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
8 |
|
breq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ∥ 𝐵 ↔ 0 ∥ 𝐵 ) ) |
9 |
7 8
|
imbi12d |
⊢ ( 𝐴 = 0 → ( ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) → 𝐴 ∥ 𝐵 ) ↔ ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) → 0 ∥ 𝐵 ) ) ) |
10 |
|
gcddvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
11 |
10
|
simpld |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
12 |
|
gcdcl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ0 ) |
13 |
12
|
nn0zd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
14 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
15 |
|
dvdsabsb |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 gcd 𝐵 ) ∥ ( abs ‘ 𝐴 ) ) ) |
16 |
13 14 15
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 gcd 𝐵 ) ∥ ( abs ‘ 𝐴 ) ) ) |
17 |
11 16
|
mpbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∥ ( abs ‘ 𝐴 ) ) |
18 |
17
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∥ ( abs ‘ 𝐴 ) ) |
19 |
|
simpl |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → 𝐴 = 0 ) |
20 |
19
|
necon3ai |
⊢ ( 𝐴 ≠ 0 → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
21 |
|
gcdn0cl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
22 |
20 21
|
sylan2 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
23 |
22
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
24 |
22
|
nnne0d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
25 |
|
nnabscl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℕ ) |
26 |
25
|
adantlr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℕ ) |
27 |
26
|
nnzd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℤ ) |
28 |
|
dvdsval2 |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ∧ ( abs ‘ 𝐴 ) ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ ( abs ‘ 𝐴 ) ↔ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
29 |
23 24 27 28
|
syl3anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) ∥ ( abs ‘ 𝐴 ) ↔ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
30 |
18 29
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
31 |
|
nnre |
⊢ ( ( abs ‘ 𝐴 ) ∈ ℕ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
32 |
|
nngt0 |
⊢ ( ( abs ‘ 𝐴 ) ∈ ℕ → 0 < ( abs ‘ 𝐴 ) ) |
33 |
31 32
|
jca |
⊢ ( ( abs ‘ 𝐴 ) ∈ ℕ → ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝐴 ) ) ) |
34 |
|
nnre |
⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ → ( 𝐴 gcd 𝐵 ) ∈ ℝ ) |
35 |
|
nngt0 |
⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ → 0 < ( 𝐴 gcd 𝐵 ) ) |
36 |
34 35
|
jca |
⊢ ( ( 𝐴 gcd 𝐵 ) ∈ ℕ → ( ( 𝐴 gcd 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 gcd 𝐵 ) ) ) |
37 |
|
divgt0 |
⊢ ( ( ( ( abs ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( abs ‘ 𝐴 ) ) ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 gcd 𝐵 ) ) ) → 0 < ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) |
38 |
33 36 37
|
syl2an |
⊢ ( ( ( abs ‘ 𝐴 ) ∈ ℕ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℕ ) → 0 < ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) |
39 |
26 22 38
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → 0 < ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) |
40 |
|
elnnz |
⊢ ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ↔ ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ 0 < ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) |
41 |
30 39 40
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
42 |
|
elnn1uz2 |
⊢ ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ↔ ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ∨ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
43 |
41 42
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ∨ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ( ℤ≥ ‘ 2 ) ) ) |
44 |
10
|
simprd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
45 |
44
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
46 |
|
breq1 |
⊢ ( ( 𝐴 gcd 𝐵 ) = ( abs ‘ 𝐴 ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( abs ‘ 𝐴 ) ∥ 𝐵 ) ) |
47 |
45 46
|
syl5ibcom |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) = ( abs ‘ 𝐴 ) → ( abs ‘ 𝐴 ) ∥ 𝐵 ) ) |
48 |
26
|
nncnd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
49 |
22
|
nncnd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
50 |
|
1cnd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → 1 ∈ ℂ ) |
51 |
48 49 50 24
|
divmuld |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ↔ ( ( 𝐴 gcd 𝐵 ) · 1 ) = ( abs ‘ 𝐴 ) ) ) |
52 |
49
|
mulid1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( 𝐴 gcd 𝐵 ) · 1 ) = ( 𝐴 gcd 𝐵 ) ) |
53 |
52
|
eqeq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( ( 𝐴 gcd 𝐵 ) · 1 ) = ( abs ‘ 𝐴 ) ↔ ( 𝐴 gcd 𝐵 ) = ( abs ‘ 𝐴 ) ) ) |
54 |
51 53
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ↔ ( 𝐴 gcd 𝐵 ) = ( abs ‘ 𝐴 ) ) ) |
55 |
|
absdvdsb |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ 𝐵 ↔ ( abs ‘ 𝐴 ) ∥ 𝐵 ) ) |
56 |
55
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 ∥ 𝐵 ↔ ( abs ‘ 𝐴 ) ∥ 𝐵 ) ) |
57 |
47 54 56
|
3imtr4d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) = 1 → 𝐴 ∥ 𝐵 ) ) |
58 |
|
exprmfct |
⊢ ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) |
59 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → 𝑝 ∈ ℙ ) |
60 |
26
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( abs ‘ 𝐴 ) ∈ ℕ ) |
61 |
60
|
nnzd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( abs ‘ 𝐴 ) ∈ ℤ ) |
62 |
60
|
nnne0d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( abs ‘ 𝐴 ) ≠ 0 ) |
63 |
22
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
64 |
|
pcdiv |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( ( abs ‘ 𝐴 ) ∈ ℤ ∧ ( abs ‘ 𝐴 ) ≠ 0 ) ∧ ( 𝐴 gcd 𝐵 ) ∈ ℕ ) → ( 𝑝 pCnt ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) = ( ( 𝑝 pCnt ( abs ‘ 𝐴 ) ) − ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ) |
65 |
59 61 62 63 64
|
syl121anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) = ( ( 𝑝 pCnt ( abs ‘ 𝐴 ) ) − ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ) |
66 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → 𝐴 ∈ ℤ ) |
67 |
|
zq |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ ) |
68 |
66 67
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → 𝐴 ∈ ℚ ) |
69 |
|
pcabs |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑝 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑝 pCnt 𝐴 ) ) |
70 |
59 68 69
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑝 pCnt 𝐴 ) ) |
71 |
70
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt ( abs ‘ 𝐴 ) ) − ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) = ( ( 𝑝 pCnt 𝐴 ) − ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ) |
72 |
65 71
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) = ( ( 𝑝 pCnt 𝐴 ) − ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ) |
73 |
|
simprr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) |
74 |
41
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
75 |
|
pcelnn |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) → ( ( 𝑝 pCnt ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ∈ ℕ ↔ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) |
76 |
59 74 75
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ∈ ℕ ↔ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) |
77 |
73 76
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ∈ ℕ ) |
78 |
72 77
|
eqeltrrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt 𝐴 ) − ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ∈ ℕ ) |
79 |
59 63
|
pccld |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ∈ ℕ0 ) |
80 |
79
|
nn0zd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
81 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → 𝐴 ≠ 0 ) |
82 |
|
pczcl |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
83 |
59 66 81 82
|
syl12anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
84 |
83
|
nn0zd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℤ ) |
85 |
|
znnsub |
⊢ ( ( ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℤ ) → ( ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) < ( 𝑝 pCnt 𝐴 ) ↔ ( ( 𝑝 pCnt 𝐴 ) − ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ∈ ℕ ) ) |
86 |
80 84 85
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) < ( 𝑝 pCnt 𝐴 ) ↔ ( ( 𝑝 pCnt 𝐴 ) − ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ∈ ℕ ) ) |
87 |
78 86
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) < ( 𝑝 pCnt 𝐴 ) ) |
88 |
79
|
nn0red |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ∈ ℝ ) |
89 |
83
|
nn0red |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℝ ) |
90 |
88 89
|
ltnled |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) < ( 𝑝 pCnt 𝐴 ) ↔ ¬ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ) |
91 |
87 90
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ¬ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) |
92 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → 𝐵 ∈ ℤ ) |
93 |
|
nprmdvds1 |
⊢ ( 𝑝 ∈ ℙ → ¬ 𝑝 ∥ 1 ) |
94 |
93
|
ad2antrl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ¬ 𝑝 ∥ 1 ) |
95 |
|
gcdid0 |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 gcd 0 ) = ( abs ‘ 𝐴 ) ) |
96 |
66 95
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝐴 gcd 0 ) = ( abs ‘ 𝐴 ) ) |
97 |
96
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 0 ) ) = ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) ) |
98 |
48
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( abs ‘ 𝐴 ) ∈ ℂ ) |
99 |
98 62
|
dividd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( abs ‘ 𝐴 ) / ( abs ‘ 𝐴 ) ) = 1 ) |
100 |
97 99
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 0 ) ) = 1 ) |
101 |
100
|
breq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 0 ) ) ↔ 𝑝 ∥ 1 ) ) |
102 |
94 101
|
mtbird |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ¬ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 0 ) ) ) |
103 |
|
oveq2 |
⊢ ( 𝐵 = 0 → ( 𝐴 gcd 𝐵 ) = ( 𝐴 gcd 0 ) ) |
104 |
103
|
oveq2d |
⊢ ( 𝐵 = 0 → ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 0 ) ) ) |
105 |
104
|
breq2d |
⊢ ( 𝐵 = 0 → ( 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ↔ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 0 ) ) ) ) |
106 |
73 105
|
syl5ibcom |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝐵 = 0 → 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 0 ) ) ) ) |
107 |
106
|
necon3bd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ¬ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 0 ) ) → 𝐵 ≠ 0 ) ) |
108 |
102 107
|
mpd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → 𝐵 ≠ 0 ) |
109 |
|
pczcl |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑝 pCnt 𝐵 ) ∈ ℕ0 ) |
110 |
59 92 108 109
|
syl12anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt 𝐵 ) ∈ ℕ0 ) |
111 |
110
|
nn0red |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) |
112 |
|
lemin |
⊢ ( ( ( 𝑝 pCnt 𝐴 ) ∈ ℝ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℝ ∧ ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) → ( ( 𝑝 pCnt 𝐴 ) ≤ if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) ↔ ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐴 ) ∧ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) ) |
113 |
89 89 111 112
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt 𝐴 ) ≤ if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) ↔ ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐴 ) ∧ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) ) |
114 |
|
pcgcd |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) = if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) ) |
115 |
59 66 92 114
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) = if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) ) |
116 |
115
|
breq2d |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝑝 pCnt 𝐴 ) ≤ if ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) , ( 𝑝 pCnt 𝐴 ) , ( 𝑝 pCnt 𝐵 ) ) ) ) |
117 |
89
|
leidd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐴 ) ) |
118 |
117
|
biantrurd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ↔ ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐴 ) ∧ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) ) |
119 |
113 116 118
|
3bitr4rd |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ( ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ↔ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt ( 𝐴 gcd 𝐵 ) ) ) ) |
120 |
91 119
|
mtbird |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ ( 𝑝 ∈ ℙ ∧ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ) ) → ¬ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) |
121 |
120
|
expr |
⊢ ( ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) → ¬ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
122 |
121
|
reximdva |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) → ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
123 |
|
rexnal |
⊢ ( ∃ 𝑝 ∈ ℙ ¬ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ↔ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) |
124 |
122 123
|
syl6ib |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) → ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
125 |
58 124
|
syl5 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ( ℤ≥ ‘ 2 ) → ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
126 |
57 125
|
orim12d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ( ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ∨ ( ( abs ‘ 𝐴 ) / ( 𝐴 gcd 𝐵 ) ) ∈ ( ℤ≥ ‘ 2 ) ) → ( 𝐴 ∥ 𝐵 ∨ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) ) |
127 |
43 126
|
mpd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( 𝐴 ∥ 𝐵 ∨ ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
128 |
127
|
ord |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ¬ 𝐴 ∥ 𝐵 → ¬ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
129 |
128
|
con4d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝐴 ≠ 0 ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) → 𝐴 ∥ 𝐵 ) ) |
130 |
|
2prm |
⊢ 2 ∈ ℙ |
131 |
130
|
ne0ii |
⊢ ℙ ≠ ∅ |
132 |
|
r19.2z |
⊢ ( ( ℙ ≠ ∅ ∧ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) ) → ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) ) |
133 |
131 132
|
mpan |
⊢ ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) → ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) ) |
134 |
|
id |
⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℙ ) |
135 |
|
zq |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℚ ) |
136 |
135
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐵 ∈ ℚ ) |
137 |
|
pcxcl |
⊢ ( ( 𝑝 ∈ ℙ ∧ 𝐵 ∈ ℚ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ* ) |
138 |
134 136 137
|
syl2anr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ* ) |
139 |
|
pnfge |
⊢ ( ( 𝑝 pCnt 𝐵 ) ∈ ℝ* → ( 𝑝 pCnt 𝐵 ) ≤ +∞ ) |
140 |
138 139
|
syl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐵 ) ≤ +∞ ) |
141 |
140
|
biantrurd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( +∞ ≤ ( 𝑝 pCnt 𝐵 ) ↔ ( ( 𝑝 pCnt 𝐵 ) ≤ +∞ ∧ +∞ ≤ ( 𝑝 pCnt 𝐵 ) ) ) ) |
142 |
|
pc0 |
⊢ ( 𝑝 ∈ ℙ → ( 𝑝 pCnt 0 ) = +∞ ) |
143 |
142
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 0 ) = +∞ ) |
144 |
143
|
breq1d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) ↔ +∞ ≤ ( 𝑝 pCnt 𝐵 ) ) ) |
145 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
146 |
|
xrletri3 |
⊢ ( ( ( 𝑝 pCnt 𝐵 ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑝 pCnt 𝐵 ) = +∞ ↔ ( ( 𝑝 pCnt 𝐵 ) ≤ +∞ ∧ +∞ ≤ ( 𝑝 pCnt 𝐵 ) ) ) ) |
147 |
138 145 146
|
sylancl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐵 ) = +∞ ↔ ( ( 𝑝 pCnt 𝐵 ) ≤ +∞ ∧ +∞ ≤ ( 𝑝 pCnt 𝐵 ) ) ) ) |
148 |
141 144 147
|
3bitr4d |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) ↔ ( 𝑝 pCnt 𝐵 ) = +∞ ) ) |
149 |
|
pnfnre |
⊢ +∞ ∉ ℝ |
150 |
149
|
neli |
⊢ ¬ +∞ ∈ ℝ |
151 |
|
eleq1 |
⊢ ( ( 𝑝 pCnt 𝐵 ) = +∞ → ( ( 𝑝 pCnt 𝐵 ) ∈ ℝ ↔ +∞ ∈ ℝ ) ) |
152 |
150 151
|
mtbiri |
⊢ ( ( 𝑝 pCnt 𝐵 ) = +∞ → ¬ ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) |
153 |
109
|
nn0red |
⊢ ( ( 𝑝 ∈ ℙ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) |
154 |
153
|
adantll |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝑝 ∈ ℙ ) ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) |
155 |
154
|
an4s |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑝 ∈ ℙ ∧ 𝐵 ≠ 0 ) ) → ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) |
156 |
155
|
expr |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( 𝐵 ≠ 0 → ( 𝑝 pCnt 𝐵 ) ∈ ℝ ) ) |
157 |
156
|
necon1bd |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( ¬ ( 𝑝 pCnt 𝐵 ) ∈ ℝ → 𝐵 = 0 ) ) |
158 |
152 157
|
syl5 |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 𝐵 ) = +∞ → 𝐵 = 0 ) ) |
159 |
148 158
|
sylbid |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) → 𝐵 = 0 ) ) |
160 |
159
|
rexlimdva |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) → 𝐵 = 0 ) ) |
161 |
|
0dvds |
⊢ ( 𝐵 ∈ ℤ → ( 0 ∥ 𝐵 ↔ 𝐵 = 0 ) ) |
162 |
161
|
adantl |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 0 ∥ 𝐵 ↔ 𝐵 = 0 ) ) |
163 |
160 162
|
sylibrd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∃ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) → 0 ∥ 𝐵 ) ) |
164 |
133 163
|
syl5 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 0 ) ≤ ( 𝑝 pCnt 𝐵 ) → 0 ∥ 𝐵 ) ) |
165 |
9 129 164
|
pm2.61ne |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) → 𝐴 ∥ 𝐵 ) ) |
166 |
4 165
|
impbid |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 ∥ 𝐵 ↔ ∀ 𝑝 ∈ ℙ ( 𝑝 pCnt 𝐴 ) ≤ ( 𝑝 pCnt 𝐵 ) ) ) |