| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pcdvdstr | ⊢ ( ( 𝑝  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐴  ∥  𝐵 ) )  →  ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) | 
						
							| 2 | 1 | ancoms | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐴  ∥  𝐵 )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) | 
						
							| 3 | 2 | ralrimiva | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ  ∧  𝐴  ∥  𝐵 )  →  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) | 
						
							| 4 | 3 | 3expia | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  ∥  𝐵  →  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝐴  =  0  →  ( 𝑝  pCnt  𝐴 )  =  ( 𝑝  pCnt  0 ) ) | 
						
							| 6 | 5 | breq1d | ⊢ ( 𝐴  =  0  →  ( ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 )  ↔  ( 𝑝  pCnt  0 )  ≤  ( 𝑝  pCnt  𝐵 ) ) ) | 
						
							| 7 | 6 | ralbidv | ⊢ ( 𝐴  =  0  →  ( ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 )  ↔  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  0 )  ≤  ( 𝑝  pCnt  𝐵 ) ) ) | 
						
							| 8 |  | breq1 | ⊢ ( 𝐴  =  0  →  ( 𝐴  ∥  𝐵  ↔  0  ∥  𝐵 ) ) | 
						
							| 9 | 7 8 | imbi12d | ⊢ ( 𝐴  =  0  →  ( ( ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 )  →  𝐴  ∥  𝐵 )  ↔  ( ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  0 )  ≤  ( 𝑝  pCnt  𝐵 )  →  0  ∥  𝐵 ) ) ) | 
						
							| 10 |  | gcddvds | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  ∧  ( 𝐴  gcd  𝐵 )  ∥  𝐵 ) ) | 
						
							| 11 | 10 | simpld | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  gcd  𝐵 )  ∥  𝐴 ) | 
						
							| 12 |  | gcdcl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ0 ) | 
						
							| 13 | 12 | nn0zd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  gcd  𝐵 )  ∈  ℤ ) | 
						
							| 14 |  | simpl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  𝐴  ∈  ℤ ) | 
						
							| 15 |  | dvdsabsb | ⊢ ( ( ( 𝐴  gcd  𝐵 )  ∈  ℤ  ∧  𝐴  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  ↔  ( 𝐴  gcd  𝐵 )  ∥  ( abs ‘ 𝐴 ) ) ) | 
						
							| 16 | 13 14 15 | syl2anc | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐴  ↔  ( 𝐴  gcd  𝐵 )  ∥  ( abs ‘ 𝐴 ) ) ) | 
						
							| 17 | 11 16 | mpbid | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  gcd  𝐵 )  ∥  ( abs ‘ 𝐴 ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( 𝐴  gcd  𝐵 )  ∥  ( abs ‘ 𝐴 ) ) | 
						
							| 19 |  | simpl | ⊢ ( ( 𝐴  =  0  ∧  𝐵  =  0 )  →  𝐴  =  0 ) | 
						
							| 20 | 19 | necon3ai | ⊢ ( 𝐴  ≠  0  →  ¬  ( 𝐴  =  0  ∧  𝐵  =  0 ) ) | 
						
							| 21 |  | gcdn0cl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ¬  ( 𝐴  =  0  ∧  𝐵  =  0 ) )  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ ) | 
						
							| 22 | 20 21 | sylan2 | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ ) | 
						
							| 23 | 22 | nnzd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( 𝐴  gcd  𝐵 )  ∈  ℤ ) | 
						
							| 24 | 22 | nnne0d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( 𝐴  gcd  𝐵 )  ≠  0 ) | 
						
							| 25 |  | nnabscl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 26 | 25 | adantlr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 27 | 26 | nnzd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 28 |  | dvdsval2 | ⊢ ( ( ( 𝐴  gcd  𝐵 )  ∈  ℤ  ∧  ( 𝐴  gcd  𝐵 )  ≠  0  ∧  ( abs ‘ 𝐴 )  ∈  ℤ )  →  ( ( 𝐴  gcd  𝐵 )  ∥  ( abs ‘ 𝐴 )  ↔  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ ) ) | 
						
							| 29 | 23 24 27 28 | syl3anc | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( ( 𝐴  gcd  𝐵 )  ∥  ( abs ‘ 𝐴 )  ↔  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ ) ) | 
						
							| 30 | 18 29 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ ) | 
						
							| 31 |  | nnre | ⊢ ( ( abs ‘ 𝐴 )  ∈  ℕ  →  ( abs ‘ 𝐴 )  ∈  ℝ ) | 
						
							| 32 |  | nngt0 | ⊢ ( ( abs ‘ 𝐴 )  ∈  ℕ  →  0  <  ( abs ‘ 𝐴 ) ) | 
						
							| 33 | 31 32 | jca | ⊢ ( ( abs ‘ 𝐴 )  ∈  ℕ  →  ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  0  <  ( abs ‘ 𝐴 ) ) ) | 
						
							| 34 |  | nnre | ⊢ ( ( 𝐴  gcd  𝐵 )  ∈  ℕ  →  ( 𝐴  gcd  𝐵 )  ∈  ℝ ) | 
						
							| 35 |  | nngt0 | ⊢ ( ( 𝐴  gcd  𝐵 )  ∈  ℕ  →  0  <  ( 𝐴  gcd  𝐵 ) ) | 
						
							| 36 | 34 35 | jca | ⊢ ( ( 𝐴  gcd  𝐵 )  ∈  ℕ  →  ( ( 𝐴  gcd  𝐵 )  ∈  ℝ  ∧  0  <  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 37 |  | divgt0 | ⊢ ( ( ( ( abs ‘ 𝐴 )  ∈  ℝ  ∧  0  <  ( abs ‘ 𝐴 ) )  ∧  ( ( 𝐴  gcd  𝐵 )  ∈  ℝ  ∧  0  <  ( 𝐴  gcd  𝐵 ) ) )  →  0  <  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 38 | 33 36 37 | syl2an | ⊢ ( ( ( abs ‘ 𝐴 )  ∈  ℕ  ∧  ( 𝐴  gcd  𝐵 )  ∈  ℕ )  →  0  <  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 39 | 26 22 38 | syl2anc | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  0  <  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 40 |  | elnnz | ⊢ ( ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ  ↔  ( ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ  ∧  0  <  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) ) | 
						
							| 41 | 30 39 40 | sylanbrc | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ ) | 
						
							| 42 |  | elnn1uz2 | ⊢ ( ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ  ↔  ( ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  =  1  ∨  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 43 | 41 42 | sylib | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  =  1  ∨  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  ∈  ( ℤ≥ ‘ 2 ) ) ) | 
						
							| 44 | 10 | simprd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  gcd  𝐵 )  ∥  𝐵 ) | 
						
							| 45 | 44 | adantr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( 𝐴  gcd  𝐵 )  ∥  𝐵 ) | 
						
							| 46 |  | breq1 | ⊢ ( ( 𝐴  gcd  𝐵 )  =  ( abs ‘ 𝐴 )  →  ( ( 𝐴  gcd  𝐵 )  ∥  𝐵  ↔  ( abs ‘ 𝐴 )  ∥  𝐵 ) ) | 
						
							| 47 | 45 46 | syl5ibcom | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( ( 𝐴  gcd  𝐵 )  =  ( abs ‘ 𝐴 )  →  ( abs ‘ 𝐴 )  ∥  𝐵 ) ) | 
						
							| 48 | 26 | nncnd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 49 | 22 | nncnd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( 𝐴  gcd  𝐵 )  ∈  ℂ ) | 
						
							| 50 |  | 1cnd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  1  ∈  ℂ ) | 
						
							| 51 | 48 49 50 24 | divmuld | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  =  1  ↔  ( ( 𝐴  gcd  𝐵 )  ·  1 )  =  ( abs ‘ 𝐴 ) ) ) | 
						
							| 52 | 49 | mulridd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( ( 𝐴  gcd  𝐵 )  ·  1 )  =  ( 𝐴  gcd  𝐵 ) ) | 
						
							| 53 | 52 | eqeq1d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( ( ( 𝐴  gcd  𝐵 )  ·  1 )  =  ( abs ‘ 𝐴 )  ↔  ( 𝐴  gcd  𝐵 )  =  ( abs ‘ 𝐴 ) ) ) | 
						
							| 54 | 51 53 | bitrd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  =  1  ↔  ( 𝐴  gcd  𝐵 )  =  ( abs ‘ 𝐴 ) ) ) | 
						
							| 55 |  | absdvdsb | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  ∥  𝐵  ↔  ( abs ‘ 𝐴 )  ∥  𝐵 ) ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( 𝐴  ∥  𝐵  ↔  ( abs ‘ 𝐴 )  ∥  𝐵 ) ) | 
						
							| 57 | 47 54 56 | 3imtr4d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  =  1  →  𝐴  ∥  𝐵 ) ) | 
						
							| 58 |  | exprmfct | ⊢ ( ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  ∈  ( ℤ≥ ‘ 2 )  →  ∃ 𝑝  ∈  ℙ 𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 59 |  | simprl | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  𝑝  ∈  ℙ ) | 
						
							| 60 | 26 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( abs ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 61 | 60 | nnzd | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( abs ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 62 | 60 | nnne0d | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( abs ‘ 𝐴 )  ≠  0 ) | 
						
							| 63 | 22 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝐴  gcd  𝐵 )  ∈  ℕ ) | 
						
							| 64 |  | pcdiv | ⊢ ( ( 𝑝  ∈  ℙ  ∧  ( ( abs ‘ 𝐴 )  ∈  ℤ  ∧  ( abs ‘ 𝐴 )  ≠  0 )  ∧  ( 𝐴  gcd  𝐵 )  ∈  ℕ )  →  ( 𝑝  pCnt  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) )  =  ( ( 𝑝  pCnt  ( abs ‘ 𝐴 ) )  −  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) ) ) ) | 
						
							| 65 | 59 61 62 63 64 | syl121anc | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝑝  pCnt  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) )  =  ( ( 𝑝  pCnt  ( abs ‘ 𝐴 ) )  −  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) ) ) ) | 
						
							| 66 |  | simplll | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  𝐴  ∈  ℤ ) | 
						
							| 67 |  | zq | ⊢ ( 𝐴  ∈  ℤ  →  𝐴  ∈  ℚ ) | 
						
							| 68 | 66 67 | syl | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  𝐴  ∈  ℚ ) | 
						
							| 69 |  | pcabs | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐴  ∈  ℚ )  →  ( 𝑝  pCnt  ( abs ‘ 𝐴 ) )  =  ( 𝑝  pCnt  𝐴 ) ) | 
						
							| 70 | 59 68 69 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝑝  pCnt  ( abs ‘ 𝐴 ) )  =  ( 𝑝  pCnt  𝐴 ) ) | 
						
							| 71 | 70 | oveq1d | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( ( 𝑝  pCnt  ( abs ‘ 𝐴 ) )  −  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) ) )  =  ( ( 𝑝  pCnt  𝐴 )  −  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) ) ) ) | 
						
							| 72 | 65 71 | eqtrd | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝑝  pCnt  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) )  =  ( ( 𝑝  pCnt  𝐴 )  −  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) ) ) ) | 
						
							| 73 |  | simprr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 74 | 41 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ ) | 
						
							| 75 |  | pcelnn | ⊢ ( ( 𝑝  ∈  ℙ  ∧  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ )  →  ( ( 𝑝  pCnt  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) )  ∈  ℕ  ↔  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) ) | 
						
							| 76 | 59 74 75 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( ( 𝑝  pCnt  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) )  ∈  ℕ  ↔  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) ) | 
						
							| 77 | 73 76 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝑝  pCnt  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) )  ∈  ℕ ) | 
						
							| 78 | 72 77 | eqeltrrd | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( ( 𝑝  pCnt  𝐴 )  −  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) ) )  ∈  ℕ ) | 
						
							| 79 | 59 63 | pccld | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) )  ∈  ℕ0 ) | 
						
							| 80 | 79 | nn0zd | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ ) | 
						
							| 81 |  | simplr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  𝐴  ≠  0 ) | 
						
							| 82 |  | pczcl | ⊢ ( ( 𝑝  ∈  ℙ  ∧  ( 𝐴  ∈  ℤ  ∧  𝐴  ≠  0 ) )  →  ( 𝑝  pCnt  𝐴 )  ∈  ℕ0 ) | 
						
							| 83 | 59 66 81 82 | syl12anc | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝑝  pCnt  𝐴 )  ∈  ℕ0 ) | 
						
							| 84 | 83 | nn0zd | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝑝  pCnt  𝐴 )  ∈  ℤ ) | 
						
							| 85 |  | znnsub | ⊢ ( ( ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) )  ∈  ℤ  ∧  ( 𝑝  pCnt  𝐴 )  ∈  ℤ )  →  ( ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) )  <  ( 𝑝  pCnt  𝐴 )  ↔  ( ( 𝑝  pCnt  𝐴 )  −  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) ) )  ∈  ℕ ) ) | 
						
							| 86 | 80 84 85 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) )  <  ( 𝑝  pCnt  𝐴 )  ↔  ( ( 𝑝  pCnt  𝐴 )  −  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) ) )  ∈  ℕ ) ) | 
						
							| 87 | 78 86 | mpbird | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) )  <  ( 𝑝  pCnt  𝐴 ) ) | 
						
							| 88 | 79 | nn0red | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) )  ∈  ℝ ) | 
						
							| 89 | 83 | nn0red | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝑝  pCnt  𝐴 )  ∈  ℝ ) | 
						
							| 90 | 88 89 | ltnled | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) )  <  ( 𝑝  pCnt  𝐴 )  ↔  ¬  ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) ) ) ) | 
						
							| 91 | 87 90 | mpbid | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ¬  ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) ) ) | 
						
							| 92 |  | simpllr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  𝐵  ∈  ℤ ) | 
						
							| 93 |  | nprmdvds1 | ⊢ ( 𝑝  ∈  ℙ  →  ¬  𝑝  ∥  1 ) | 
						
							| 94 | 93 | ad2antrl | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ¬  𝑝  ∥  1 ) | 
						
							| 95 |  | gcdid0 | ⊢ ( 𝐴  ∈  ℤ  →  ( 𝐴  gcd  0 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 96 | 66 95 | syl | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝐴  gcd  0 )  =  ( abs ‘ 𝐴 ) ) | 
						
							| 97 | 96 | oveq2d | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  0 ) )  =  ( ( abs ‘ 𝐴 )  /  ( abs ‘ 𝐴 ) ) ) | 
						
							| 98 | 48 | adantr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( abs ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 99 | 98 62 | dividd | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( ( abs ‘ 𝐴 )  /  ( abs ‘ 𝐴 ) )  =  1 ) | 
						
							| 100 | 97 99 | eqtrd | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  0 ) )  =  1 ) | 
						
							| 101 | 100 | breq2d | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  0 ) )  ↔  𝑝  ∥  1 ) ) | 
						
							| 102 | 94 101 | mtbird | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ¬  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  0 ) ) ) | 
						
							| 103 |  | oveq2 | ⊢ ( 𝐵  =  0  →  ( 𝐴  gcd  𝐵 )  =  ( 𝐴  gcd  0 ) ) | 
						
							| 104 | 103 | oveq2d | ⊢ ( 𝐵  =  0  →  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  =  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  0 ) ) ) | 
						
							| 105 | 104 | breq2d | ⊢ ( 𝐵  =  0  →  ( 𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  ↔  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  0 ) ) ) ) | 
						
							| 106 | 73 105 | syl5ibcom | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝐵  =  0  →  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  0 ) ) ) ) | 
						
							| 107 | 106 | necon3bd | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( ¬  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  0 ) )  →  𝐵  ≠  0 ) ) | 
						
							| 108 | 102 107 | mpd | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  𝐵  ≠  0 ) | 
						
							| 109 |  | pczcl | ⊢ ( ( 𝑝  ∈  ℙ  ∧  ( 𝐵  ∈  ℤ  ∧  𝐵  ≠  0 ) )  →  ( 𝑝  pCnt  𝐵 )  ∈  ℕ0 ) | 
						
							| 110 | 59 92 108 109 | syl12anc | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝑝  pCnt  𝐵 )  ∈  ℕ0 ) | 
						
							| 111 | 110 | nn0red | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝑝  pCnt  𝐵 )  ∈  ℝ ) | 
						
							| 112 |  | lemin | ⊢ ( ( ( 𝑝  pCnt  𝐴 )  ∈  ℝ  ∧  ( 𝑝  pCnt  𝐴 )  ∈  ℝ  ∧  ( 𝑝  pCnt  𝐵 )  ∈  ℝ )  →  ( ( 𝑝  pCnt  𝐴 )  ≤  if ( ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ,  ( 𝑝  pCnt  𝐴 ) ,  ( 𝑝  pCnt  𝐵 ) )  ↔  ( ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐴 )  ∧  ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) ) ) | 
						
							| 113 | 89 89 111 112 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( ( 𝑝  pCnt  𝐴 )  ≤  if ( ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ,  ( 𝑝  pCnt  𝐴 ) ,  ( 𝑝  pCnt  𝐵 ) )  ↔  ( ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐴 )  ∧  ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) ) ) | 
						
							| 114 |  | pcgcd | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) )  =  if ( ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ,  ( 𝑝  pCnt  𝐴 ) ,  ( 𝑝  pCnt  𝐵 ) ) ) | 
						
							| 115 | 59 66 92 114 | syl3anc | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) )  =  if ( ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ,  ( 𝑝  pCnt  𝐴 ) ,  ( 𝑝  pCnt  𝐵 ) ) ) | 
						
							| 116 | 115 | breq2d | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) )  ↔  ( 𝑝  pCnt  𝐴 )  ≤  if ( ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ,  ( 𝑝  pCnt  𝐴 ) ,  ( 𝑝  pCnt  𝐵 ) ) ) ) | 
						
							| 117 | 89 | leidd | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐴 ) ) | 
						
							| 118 | 117 | biantrurd | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 )  ↔  ( ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐴 )  ∧  ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) ) ) | 
						
							| 119 | 113 116 118 | 3bitr4rd | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ( ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 )  ↔  ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  ( 𝐴  gcd  𝐵 ) ) ) ) | 
						
							| 120 | 91 119 | mtbird | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  ( 𝑝  ∈  ℙ  ∧  𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) ) ) )  →  ¬  ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) | 
						
							| 121 | 120 | expr | ⊢ ( ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  →  ¬  ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) ) | 
						
							| 122 | 121 | reximdva | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( ∃ 𝑝  ∈  ℙ 𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  →  ∃ 𝑝  ∈  ℙ ¬  ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) ) | 
						
							| 123 |  | rexnal | ⊢ ( ∃ 𝑝  ∈  ℙ ¬  ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 )  ↔  ¬  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) | 
						
							| 124 | 122 123 | imbitrdi | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( ∃ 𝑝  ∈  ℙ 𝑝  ∥  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  →  ¬  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) ) | 
						
							| 125 | 58 124 | syl5 | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  ∈  ( ℤ≥ ‘ 2 )  →  ¬  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) ) | 
						
							| 126 | 57 125 | orim12d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( ( ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  =  1  ∨  ( ( abs ‘ 𝐴 )  /  ( 𝐴  gcd  𝐵 ) )  ∈  ( ℤ≥ ‘ 2 ) )  →  ( 𝐴  ∥  𝐵  ∨  ¬  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) ) ) | 
						
							| 127 | 43 126 | mpd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( 𝐴  ∥  𝐵  ∨  ¬  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) ) | 
						
							| 128 | 127 | ord | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( ¬  𝐴  ∥  𝐵  →  ¬  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) ) | 
						
							| 129 | 128 | con4d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝐴  ≠  0 )  →  ( ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 )  →  𝐴  ∥  𝐵 ) ) | 
						
							| 130 |  | 2prm | ⊢ 2  ∈  ℙ | 
						
							| 131 | 130 | ne0ii | ⊢ ℙ  ≠  ∅ | 
						
							| 132 |  | r19.2z | ⊢ ( ( ℙ  ≠  ∅  ∧  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  0 )  ≤  ( 𝑝  pCnt  𝐵 ) )  →  ∃ 𝑝  ∈  ℙ ( 𝑝  pCnt  0 )  ≤  ( 𝑝  pCnt  𝐵 ) ) | 
						
							| 133 | 131 132 | mpan | ⊢ ( ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  0 )  ≤  ( 𝑝  pCnt  𝐵 )  →  ∃ 𝑝  ∈  ℙ ( 𝑝  pCnt  0 )  ≤  ( 𝑝  pCnt  𝐵 ) ) | 
						
							| 134 |  | id | ⊢ ( 𝑝  ∈  ℙ  →  𝑝  ∈  ℙ ) | 
						
							| 135 |  | zq | ⊢ ( 𝐵  ∈  ℤ  →  𝐵  ∈  ℚ ) | 
						
							| 136 | 135 | adantl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  𝐵  ∈  ℚ ) | 
						
							| 137 |  | pcxcl | ⊢ ( ( 𝑝  ∈  ℙ  ∧  𝐵  ∈  ℚ )  →  ( 𝑝  pCnt  𝐵 )  ∈  ℝ* ) | 
						
							| 138 | 134 136 137 | syl2anr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  pCnt  𝐵 )  ∈  ℝ* ) | 
						
							| 139 |  | pnfge | ⊢ ( ( 𝑝  pCnt  𝐵 )  ∈  ℝ*  →  ( 𝑝  pCnt  𝐵 )  ≤  +∞ ) | 
						
							| 140 | 138 139 | syl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  pCnt  𝐵 )  ≤  +∞ ) | 
						
							| 141 | 140 | biantrurd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝑝  ∈  ℙ )  →  ( +∞  ≤  ( 𝑝  pCnt  𝐵 )  ↔  ( ( 𝑝  pCnt  𝐵 )  ≤  +∞  ∧  +∞  ≤  ( 𝑝  pCnt  𝐵 ) ) ) ) | 
						
							| 142 |  | pc0 | ⊢ ( 𝑝  ∈  ℙ  →  ( 𝑝  pCnt  0 )  =  +∞ ) | 
						
							| 143 | 142 | adantl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝑝  ∈  ℙ )  →  ( 𝑝  pCnt  0 )  =  +∞ ) | 
						
							| 144 | 143 | breq1d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑝  pCnt  0 )  ≤  ( 𝑝  pCnt  𝐵 )  ↔  +∞  ≤  ( 𝑝  pCnt  𝐵 ) ) ) | 
						
							| 145 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 146 |  | xrletri3 | ⊢ ( ( ( 𝑝  pCnt  𝐵 )  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  →  ( ( 𝑝  pCnt  𝐵 )  =  +∞  ↔  ( ( 𝑝  pCnt  𝐵 )  ≤  +∞  ∧  +∞  ≤  ( 𝑝  pCnt  𝐵 ) ) ) ) | 
						
							| 147 | 138 145 146 | sylancl | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑝  pCnt  𝐵 )  =  +∞  ↔  ( ( 𝑝  pCnt  𝐵 )  ≤  +∞  ∧  +∞  ≤  ( 𝑝  pCnt  𝐵 ) ) ) ) | 
						
							| 148 | 141 144 147 | 3bitr4d | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑝  pCnt  0 )  ≤  ( 𝑝  pCnt  𝐵 )  ↔  ( 𝑝  pCnt  𝐵 )  =  +∞ ) ) | 
						
							| 149 |  | pnfnre | ⊢ +∞  ∉  ℝ | 
						
							| 150 | 149 | neli | ⊢ ¬  +∞  ∈  ℝ | 
						
							| 151 |  | eleq1 | ⊢ ( ( 𝑝  pCnt  𝐵 )  =  +∞  →  ( ( 𝑝  pCnt  𝐵 )  ∈  ℝ  ↔  +∞  ∈  ℝ ) ) | 
						
							| 152 | 150 151 | mtbiri | ⊢ ( ( 𝑝  pCnt  𝐵 )  =  +∞  →  ¬  ( 𝑝  pCnt  𝐵 )  ∈  ℝ ) | 
						
							| 153 | 109 | nn0red | ⊢ ( ( 𝑝  ∈  ℙ  ∧  ( 𝐵  ∈  ℤ  ∧  𝐵  ≠  0 ) )  →  ( 𝑝  pCnt  𝐵 )  ∈  ℝ ) | 
						
							| 154 | 153 | adantll | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝑝  ∈  ℙ )  ∧  ( 𝐵  ∈  ℤ  ∧  𝐵  ≠  0 ) )  →  ( 𝑝  pCnt  𝐵 )  ∈  ℝ ) | 
						
							| 155 | 154 | an4s | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  ( 𝑝  ∈  ℙ  ∧  𝐵  ≠  0 ) )  →  ( 𝑝  pCnt  𝐵 )  ∈  ℝ ) | 
						
							| 156 | 155 | expr | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝑝  ∈  ℙ )  →  ( 𝐵  ≠  0  →  ( 𝑝  pCnt  𝐵 )  ∈  ℝ ) ) | 
						
							| 157 | 156 | necon1bd | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝑝  ∈  ℙ )  →  ( ¬  ( 𝑝  pCnt  𝐵 )  ∈  ℝ  →  𝐵  =  0 ) ) | 
						
							| 158 | 152 157 | syl5 | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑝  pCnt  𝐵 )  =  +∞  →  𝐵  =  0 ) ) | 
						
							| 159 | 148 158 | sylbid | ⊢ ( ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  ∧  𝑝  ∈  ℙ )  →  ( ( 𝑝  pCnt  0 )  ≤  ( 𝑝  pCnt  𝐵 )  →  𝐵  =  0 ) ) | 
						
							| 160 | 159 | rexlimdva | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ∃ 𝑝  ∈  ℙ ( 𝑝  pCnt  0 )  ≤  ( 𝑝  pCnt  𝐵 )  →  𝐵  =  0 ) ) | 
						
							| 161 |  | 0dvds | ⊢ ( 𝐵  ∈  ℤ  →  ( 0  ∥  𝐵  ↔  𝐵  =  0 ) ) | 
						
							| 162 | 161 | adantl | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 0  ∥  𝐵  ↔  𝐵  =  0 ) ) | 
						
							| 163 | 160 162 | sylibrd | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ∃ 𝑝  ∈  ℙ ( 𝑝  pCnt  0 )  ≤  ( 𝑝  pCnt  𝐵 )  →  0  ∥  𝐵 ) ) | 
						
							| 164 | 133 163 | syl5 | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  0 )  ≤  ( 𝑝  pCnt  𝐵 )  →  0  ∥  𝐵 ) ) | 
						
							| 165 | 9 129 164 | pm2.61ne | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 )  →  𝐴  ∥  𝐵 ) ) | 
						
							| 166 | 4 165 | impbid | ⊢ ( ( 𝐴  ∈  ℤ  ∧  𝐵  ∈  ℤ )  →  ( 𝐴  ∥  𝐵  ↔  ∀ 𝑝  ∈  ℙ ( 𝑝  pCnt  𝐴 )  ≤  ( 𝑝  pCnt  𝐵 ) ) ) |