Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( ( abs ‘ 𝐴 ) = 𝐴 → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
2 |
1
|
a1i |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( ( abs ‘ 𝐴 ) = 𝐴 → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ) ) |
3 |
|
pcneg |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ) |
4 |
|
oveq2 |
⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt - 𝐴 ) ) |
5 |
4
|
eqeq1d |
⊢ ( ( abs ‘ 𝐴 ) = - 𝐴 → ( ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ↔ ( 𝑃 pCnt - 𝐴 ) = ( 𝑃 pCnt 𝐴 ) ) ) |
6 |
3 5
|
syl5ibrcom |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( ( abs ‘ 𝐴 ) = - 𝐴 → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ) ) |
7 |
|
qre |
⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℝ ) |
8 |
7
|
adantl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → 𝐴 ∈ ℝ ) |
9 |
8
|
absord |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( ( abs ‘ 𝐴 ) = 𝐴 ∨ ( abs ‘ 𝐴 ) = - 𝐴 ) ) |
10 |
2 6 9
|
mpjaod |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ) |