| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pcadd.1 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 2 |  | pcadd.2 | ⊢ ( 𝜑  →  𝐴  ∈  ℚ ) | 
						
							| 3 |  | pcadd.3 | ⊢ ( 𝜑  →  𝐵  ∈  ℚ ) | 
						
							| 4 |  | pcadd.4 | ⊢ ( 𝜑  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  𝐵 ) ) | 
						
							| 5 |  | elq | ⊢ ( 𝐴  ∈  ℚ  ↔  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) | 
						
							| 6 | 2 5 | sylib | ⊢ ( 𝜑  →  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) | 
						
							| 7 |  | elq | ⊢ ( 𝐵  ∈  ℚ  ↔  ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℕ 𝐵  =  ( 𝑧  /  𝑤 ) ) | 
						
							| 8 | 3 7 | sylib | ⊢ ( 𝜑  →  ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℕ 𝐵  =  ( 𝑧  /  𝑤 ) ) | 
						
							| 9 |  | pcxcl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℚ )  →  ( 𝑃  pCnt  𝐴 )  ∈  ℝ* ) | 
						
							| 10 | 1 2 9 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  pCnt  𝐴 )  ∈  ℝ* ) | 
						
							| 11 | 10 | xrleidd | ⊢ ( 𝜑  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  𝐴 ) ) | 
						
							| 12 | 11 | adantr | ⊢ ( ( 𝜑  ∧  𝐵  =  0 )  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  𝐴 ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝐵  =  0  →  ( 𝐴  +  𝐵 )  =  ( 𝐴  +  0 ) ) | 
						
							| 14 |  | qcn | ⊢ ( 𝐴  ∈  ℚ  →  𝐴  ∈  ℂ ) | 
						
							| 15 | 2 14 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 16 | 15 | addridd | ⊢ ( 𝜑  →  ( 𝐴  +  0 )  =  𝐴 ) | 
						
							| 17 | 13 16 | sylan9eqr | ⊢ ( ( 𝜑  ∧  𝐵  =  0 )  →  ( 𝐴  +  𝐵 )  =  𝐴 ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( ( 𝜑  ∧  𝐵  =  0 )  →  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) )  =  ( 𝑃  pCnt  𝐴 ) ) | 
						
							| 19 | 12 18 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝐵  =  0 )  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 20 | 19 | a1d | ⊢ ( ( 𝜑  ∧  𝐵  =  0 )  →  ( ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 )  ∧  ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℕ 𝐵  =  ( 𝑧  /  𝑤 ) )  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 21 |  | reeanv | ⊢ ( ∃ 𝑥  ∈  ℤ ∃ 𝑧  ∈  ℤ ( ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 )  ∧  ∃ 𝑤  ∈  ℕ 𝐵  =  ( 𝑧  /  𝑤 ) )  ↔  ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 )  ∧  ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℕ 𝐵  =  ( 𝑧  /  𝑤 ) ) ) | 
						
							| 22 |  | reeanv | ⊢ ( ∃ 𝑦  ∈  ℕ ∃ 𝑤  ∈  ℕ ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) )  ↔  ( ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 )  ∧  ∃ 𝑤  ∈  ℕ 𝐵  =  ( 𝑧  /  𝑤 ) ) ) | 
						
							| 23 | 1 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑃  ∈  ℙ ) | 
						
							| 24 |  | prmnn | ⊢ ( 𝑃  ∈  ℙ  →  𝑃  ∈  ℕ ) | 
						
							| 25 | 23 24 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑃  ∈  ℕ ) | 
						
							| 26 |  | simplrl | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑥  ∈  ℤ ) | 
						
							| 27 |  | simprrl | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝐴  =  ( 𝑥  /  𝑦 ) ) | 
						
							| 28 |  | pc0 | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  pCnt  0 )  =  +∞ ) | 
						
							| 29 | 23 28 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  0 )  =  +∞ ) | 
						
							| 30 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝐵  ∈  ℚ ) | 
						
							| 31 |  | simpllr | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝐵  ≠  0 ) | 
						
							| 32 |  | pcqcl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐵  ∈  ℚ  ∧  𝐵  ≠  0 ) )  →  ( 𝑃  pCnt  𝐵 )  ∈  ℤ ) | 
						
							| 33 | 23 30 31 32 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝐵 )  ∈  ℤ ) | 
						
							| 34 | 33 | zred | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝐵 )  ∈  ℝ ) | 
						
							| 35 |  | ltpnf | ⊢ ( ( 𝑃  pCnt  𝐵 )  ∈  ℝ  →  ( 𝑃  pCnt  𝐵 )  <  +∞ ) | 
						
							| 36 |  | rexr | ⊢ ( ( 𝑃  pCnt  𝐵 )  ∈  ℝ  →  ( 𝑃  pCnt  𝐵 )  ∈  ℝ* ) | 
						
							| 37 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 38 |  | xrltnle | ⊢ ( ( ( 𝑃  pCnt  𝐵 )  ∈  ℝ*  ∧  +∞  ∈  ℝ* )  →  ( ( 𝑃  pCnt  𝐵 )  <  +∞  ↔  ¬  +∞  ≤  ( 𝑃  pCnt  𝐵 ) ) ) | 
						
							| 39 | 36 37 38 | sylancl | ⊢ ( ( 𝑃  pCnt  𝐵 )  ∈  ℝ  →  ( ( 𝑃  pCnt  𝐵 )  <  +∞  ↔  ¬  +∞  ≤  ( 𝑃  pCnt  𝐵 ) ) ) | 
						
							| 40 | 35 39 | mpbid | ⊢ ( ( 𝑃  pCnt  𝐵 )  ∈  ℝ  →  ¬  +∞  ≤  ( 𝑃  pCnt  𝐵 ) ) | 
						
							| 41 | 34 40 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ¬  +∞  ≤  ( 𝑃  pCnt  𝐵 ) ) | 
						
							| 42 | 29 41 | eqnbrtrd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ¬  ( 𝑃  pCnt  0 )  ≤  ( 𝑃  pCnt  𝐵 ) ) | 
						
							| 43 | 4 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  𝐵 ) ) | 
						
							| 44 |  | oveq2 | ⊢ ( 𝐴  =  0  →  ( 𝑃  pCnt  𝐴 )  =  ( 𝑃  pCnt  0 ) ) | 
						
							| 45 | 44 | breq1d | ⊢ ( 𝐴  =  0  →  ( ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  𝐵 )  ↔  ( 𝑃  pCnt  0 )  ≤  ( 𝑃  pCnt  𝐵 ) ) ) | 
						
							| 46 | 43 45 | syl5ibcom | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝐴  =  0  →  ( 𝑃  pCnt  0 )  ≤  ( 𝑃  pCnt  𝐵 ) ) ) | 
						
							| 47 | 46 | necon3bd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ¬  ( 𝑃  pCnt  0 )  ≤  ( 𝑃  pCnt  𝐵 )  →  𝐴  ≠  0 ) ) | 
						
							| 48 | 42 47 | mpd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝐴  ≠  0 ) | 
						
							| 49 | 27 48 | eqnetrrd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑥  /  𝑦 )  ≠  0 ) | 
						
							| 50 |  | simprll | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑦  ∈  ℕ ) | 
						
							| 51 | 50 | nncnd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑦  ∈  ℂ ) | 
						
							| 52 | 50 | nnne0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑦  ≠  0 ) | 
						
							| 53 | 51 52 | div0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 0  /  𝑦 )  =  0 ) | 
						
							| 54 |  | oveq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  /  𝑦 )  =  ( 0  /  𝑦 ) ) | 
						
							| 55 | 54 | eqeq1d | ⊢ ( 𝑥  =  0  →  ( ( 𝑥  /  𝑦 )  =  0  ↔  ( 0  /  𝑦 )  =  0 ) ) | 
						
							| 56 | 53 55 | syl5ibrcom | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑥  =  0  →  ( 𝑥  /  𝑦 )  =  0 ) ) | 
						
							| 57 | 56 | necon3d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑥  /  𝑦 )  ≠  0  →  𝑥  ≠  0 ) ) | 
						
							| 58 | 49 57 | mpd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑥  ≠  0 ) | 
						
							| 59 |  | pczcl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑥  ≠  0 ) )  →  ( 𝑃  pCnt  𝑥 )  ∈  ℕ0 ) | 
						
							| 60 | 23 26 58 59 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝑥 )  ∈  ℕ0 ) | 
						
							| 61 | 25 60 | nnexpcld | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  ∈  ℕ ) | 
						
							| 62 | 61 | nncnd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  ∈  ℂ ) | 
						
							| 63 | 62 51 | mulcomd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  ·  𝑦 )  =  ( 𝑦  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) ) ) ) | 
						
							| 64 | 63 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑥  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) )  /  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  ·  𝑦 ) )  =  ( ( 𝑥  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) )  /  ( 𝑦  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) ) ) ) ) | 
						
							| 65 | 26 | zcnd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑥  ∈  ℂ ) | 
						
							| 66 | 23 50 | pccld | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝑦 )  ∈  ℕ0 ) | 
						
							| 67 | 25 66 | nnexpcld | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) )  ∈  ℕ ) | 
						
							| 68 | 67 | nncnd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) )  ∈  ℂ ) | 
						
							| 69 | 61 | nnne0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  ≠  0 ) | 
						
							| 70 | 67 | nnne0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) )  ≠  0 ) | 
						
							| 71 | 65 62 51 68 69 70 52 | divdivdivd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑥  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) ) )  /  ( 𝑦  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) ) )  =  ( ( 𝑥  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) )  /  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  ·  𝑦 ) ) ) | 
						
							| 72 | 27 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝐴 )  =  ( 𝑃  pCnt  ( 𝑥  /  𝑦 ) ) ) | 
						
							| 73 |  | pcdiv | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑥  ≠  0 )  ∧  𝑦  ∈  ℕ )  →  ( 𝑃  pCnt  ( 𝑥  /  𝑦 ) )  =  ( ( 𝑃  pCnt  𝑥 )  −  ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 74 | 23 26 58 50 73 | syl121anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  ( 𝑥  /  𝑦 ) )  =  ( ( 𝑃  pCnt  𝑥 )  −  ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 75 | 72 74 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝐴 )  =  ( ( 𝑃  pCnt  𝑥 )  −  ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 76 | 75 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  =  ( 𝑃 ↑ ( ( 𝑃  pCnt  𝑥 )  −  ( 𝑃  pCnt  𝑦 ) ) ) ) | 
						
							| 77 | 25 | nncnd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑃  ∈  ℂ ) | 
						
							| 78 | 25 | nnne0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑃  ≠  0 ) | 
						
							| 79 | 66 | nn0zd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝑦 )  ∈  ℤ ) | 
						
							| 80 | 60 | nn0zd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝑥 )  ∈  ℤ ) | 
						
							| 81 | 77 78 79 80 | expsubd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( ( 𝑃  pCnt  𝑥 )  −  ( 𝑃  pCnt  𝑦 ) ) )  =  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) ) ) | 
						
							| 82 | 76 81 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  =  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) ) ) | 
						
							| 83 | 82 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  =  ( 𝐴  /  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) ) ) ) | 
						
							| 84 | 27 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝐴  /  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) ) )  =  ( ( 𝑥  /  𝑦 )  /  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) ) ) ) | 
						
							| 85 | 65 51 62 68 52 70 69 | divdivdivd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑥  /  𝑦 )  /  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) ) )  =  ( ( 𝑥  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) )  /  ( 𝑦  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) ) ) ) ) | 
						
							| 86 | 83 84 85 | 3eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) )  =  ( ( 𝑥  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) )  /  ( 𝑦  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) ) ) ) ) | 
						
							| 87 | 64 71 86 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑥  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) ) )  /  ( 𝑦  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) ) )  =  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 88 | 87 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ·  ( ( 𝑥  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) ) )  /  ( 𝑦  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) ) ) )  =  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ·  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) ) ) | 
						
							| 89 | 2 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝐴  ∈  ℚ ) | 
						
							| 90 | 89 14 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝐴  ∈  ℂ ) | 
						
							| 91 |  | pcqcl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  →  ( 𝑃  pCnt  𝐴 )  ∈  ℤ ) | 
						
							| 92 | 23 89 48 91 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝐴 )  ∈  ℤ ) | 
						
							| 93 | 77 78 92 | expclzd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ∈  ℂ ) | 
						
							| 94 | 77 78 92 | expne0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ≠  0 ) | 
						
							| 95 | 90 93 94 | divcan2d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ·  ( 𝐴  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) ) ) )  =  𝐴 ) | 
						
							| 96 | 88 95 | eqtr2d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝐴  =  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐴 ) )  ·  ( ( 𝑥  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) ) )  /  ( 𝑦  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) ) ) ) ) | 
						
							| 97 |  | simplrr | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑧  ∈  ℤ ) | 
						
							| 98 |  | simprrr | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝐵  =  ( 𝑧  /  𝑤 ) ) | 
						
							| 99 | 98 31 | eqnetrrd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑧  /  𝑤 )  ≠  0 ) | 
						
							| 100 |  | simprlr | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑤  ∈  ℕ ) | 
						
							| 101 | 100 | nncnd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑤  ∈  ℂ ) | 
						
							| 102 | 100 | nnne0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑤  ≠  0 ) | 
						
							| 103 | 101 102 | div0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 0  /  𝑤 )  =  0 ) | 
						
							| 104 |  | oveq1 | ⊢ ( 𝑧  =  0  →  ( 𝑧  /  𝑤 )  =  ( 0  /  𝑤 ) ) | 
						
							| 105 | 104 | eqeq1d | ⊢ ( 𝑧  =  0  →  ( ( 𝑧  /  𝑤 )  =  0  ↔  ( 0  /  𝑤 )  =  0 ) ) | 
						
							| 106 | 103 105 | syl5ibrcom | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑧  =  0  →  ( 𝑧  /  𝑤 )  =  0 ) ) | 
						
							| 107 | 106 | necon3d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑧  /  𝑤 )  ≠  0  →  𝑧  ≠  0 ) ) | 
						
							| 108 | 99 107 | mpd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑧  ≠  0 ) | 
						
							| 109 |  | pczcl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑧  ≠  0 ) )  →  ( 𝑃  pCnt  𝑧 )  ∈  ℕ0 ) | 
						
							| 110 | 23 97 108 109 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝑧 )  ∈  ℕ0 ) | 
						
							| 111 | 25 110 | nnexpcld | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  ∈  ℕ ) | 
						
							| 112 | 111 | nncnd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  ∈  ℂ ) | 
						
							| 113 | 112 101 | mulcomd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  ·  𝑤 )  =  ( 𝑤  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) ) ) ) | 
						
							| 114 | 113 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑧  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) )  /  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  ·  𝑤 ) )  =  ( ( 𝑧  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) )  /  ( 𝑤  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) ) ) ) ) | 
						
							| 115 | 97 | zcnd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑧  ∈  ℂ ) | 
						
							| 116 | 23 100 | pccld | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝑤 )  ∈  ℕ0 ) | 
						
							| 117 | 25 116 | nnexpcld | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) )  ∈  ℕ ) | 
						
							| 118 | 117 | nncnd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) )  ∈  ℂ ) | 
						
							| 119 | 111 | nnne0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  ≠  0 ) | 
						
							| 120 | 117 | nnne0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) )  ≠  0 ) | 
						
							| 121 | 115 112 101 118 119 120 102 | divdivdivd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑧  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) ) )  /  ( 𝑤  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) ) )  =  ( ( 𝑧  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) )  /  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  ·  𝑤 ) ) ) | 
						
							| 122 | 98 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝐵 )  =  ( 𝑃  pCnt  ( 𝑧  /  𝑤 ) ) ) | 
						
							| 123 |  | pcdiv | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑧  ≠  0 )  ∧  𝑤  ∈  ℕ )  →  ( 𝑃  pCnt  ( 𝑧  /  𝑤 ) )  =  ( ( 𝑃  pCnt  𝑧 )  −  ( 𝑃  pCnt  𝑤 ) ) ) | 
						
							| 124 | 23 97 108 100 123 | syl121anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  ( 𝑧  /  𝑤 ) )  =  ( ( 𝑃  pCnt  𝑧 )  −  ( 𝑃  pCnt  𝑤 ) ) ) | 
						
							| 125 | 122 124 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝐵 )  =  ( ( 𝑃  pCnt  𝑧 )  −  ( 𝑃  pCnt  𝑤 ) ) ) | 
						
							| 126 | 125 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐵 ) )  =  ( 𝑃 ↑ ( ( 𝑃  pCnt  𝑧 )  −  ( 𝑃  pCnt  𝑤 ) ) ) ) | 
						
							| 127 | 116 | nn0zd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝑤 )  ∈  ℤ ) | 
						
							| 128 | 110 | nn0zd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝑧 )  ∈  ℤ ) | 
						
							| 129 | 77 78 127 128 | expsubd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( ( 𝑃  pCnt  𝑧 )  −  ( 𝑃  pCnt  𝑤 ) ) )  =  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) ) ) | 
						
							| 130 | 126 129 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐵 ) )  =  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) ) ) | 
						
							| 131 | 130 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝐵  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐵 ) ) )  =  ( 𝐵  /  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) ) ) ) | 
						
							| 132 | 98 | oveq1d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝐵  /  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) ) )  =  ( ( 𝑧  /  𝑤 )  /  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) ) ) ) | 
						
							| 133 | 115 101 112 118 102 120 119 | divdivdivd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑧  /  𝑤 )  /  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) ) )  =  ( ( 𝑧  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) )  /  ( 𝑤  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) ) ) ) ) | 
						
							| 134 | 131 132 133 | 3eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝐵  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐵 ) ) )  =  ( ( 𝑧  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) )  /  ( 𝑤  ·  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) ) ) ) ) | 
						
							| 135 | 114 121 134 | 3eqtr4d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑧  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) ) )  /  ( 𝑤  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) ) )  =  ( 𝐵  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐵 ) ) ) ) | 
						
							| 136 | 135 | oveq2d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐵 ) )  ·  ( ( 𝑧  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) ) )  /  ( 𝑤  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) ) ) )  =  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐵 ) )  ·  ( 𝐵  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐵 ) ) ) ) ) | 
						
							| 137 |  | qcn | ⊢ ( 𝐵  ∈  ℚ  →  𝐵  ∈  ℂ ) | 
						
							| 138 | 30 137 | syl | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝐵  ∈  ℂ ) | 
						
							| 139 | 77 78 33 | expclzd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐵 ) )  ∈  ℂ ) | 
						
							| 140 | 77 78 33 | expne0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝐵 ) )  ≠  0 ) | 
						
							| 141 | 138 139 140 | divcan2d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐵 ) )  ·  ( 𝐵  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝐵 ) ) ) )  =  𝐵 ) | 
						
							| 142 | 136 141 | eqtr2d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝐵  =  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝐵 ) )  ·  ( ( 𝑧  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) ) )  /  ( 𝑤  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) ) ) ) ) | 
						
							| 143 |  | eluz | ⊢ ( ( ( 𝑃  pCnt  𝐴 )  ∈  ℤ  ∧  ( 𝑃  pCnt  𝐵 )  ∈  ℤ )  →  ( ( 𝑃  pCnt  𝐵 )  ∈  ( ℤ≥ ‘ ( 𝑃  pCnt  𝐴 ) )  ↔  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  𝐵 ) ) ) | 
						
							| 144 | 92 33 143 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑃  pCnt  𝐵 )  ∈  ( ℤ≥ ‘ ( 𝑃  pCnt  𝐴 ) )  ↔  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  𝐵 ) ) ) | 
						
							| 145 | 43 144 | mpbird | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝐵 )  ∈  ( ℤ≥ ‘ ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 146 |  | pczdvds | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑥  ≠  0 ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  ∥  𝑥 ) | 
						
							| 147 | 23 26 58 146 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  ∥  𝑥 ) | 
						
							| 148 | 61 | nnzd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  ∈  ℤ ) | 
						
							| 149 |  | dvdsval2 | ⊢ ( ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  ∈  ℤ  ∧  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  ≠  0  ∧  𝑥  ∈  ℤ )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  ∥  𝑥  ↔  ( 𝑥  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) ) )  ∈  ℤ ) ) | 
						
							| 150 | 148 69 26 149 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) )  ∥  𝑥  ↔  ( 𝑥  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) ) )  ∈  ℤ ) ) | 
						
							| 151 | 147 150 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑥  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) ) )  ∈  ℤ ) | 
						
							| 152 |  | pczndvds2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑥  ∈  ℤ  ∧  𝑥  ≠  0 ) )  →  ¬  𝑃  ∥  ( 𝑥  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) ) ) ) | 
						
							| 153 | 23 26 58 152 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ¬  𝑃  ∥  ( 𝑥  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) ) ) ) | 
						
							| 154 | 151 153 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑥  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) ) )  ∈  ℤ  ∧  ¬  𝑃  ∥  ( 𝑥  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑥 ) ) ) ) ) | 
						
							| 155 |  | pcdvds | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑦  ∈  ℕ )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) )  ∥  𝑦 ) | 
						
							| 156 | 23 50 155 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) )  ∥  𝑦 ) | 
						
							| 157 | 67 | nnzd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) )  ∈  ℤ ) | 
						
							| 158 | 50 | nnzd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑦  ∈  ℤ ) | 
						
							| 159 |  | dvdsval2 | ⊢ ( ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) )  ∈  ℤ  ∧  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) )  ≠  0  ∧  𝑦  ∈  ℤ )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) )  ∥  𝑦  ↔  ( 𝑦  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) )  ∈  ℤ ) ) | 
						
							| 160 | 157 70 158 159 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) )  ∥  𝑦  ↔  ( 𝑦  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) )  ∈  ℤ ) ) | 
						
							| 161 | 156 160 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑦  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) )  ∈  ℤ ) | 
						
							| 162 | 50 | nnred | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑦  ∈  ℝ ) | 
						
							| 163 | 67 | nnred | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) )  ∈  ℝ ) | 
						
							| 164 | 50 | nngt0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  0  <  𝑦 ) | 
						
							| 165 | 67 | nngt0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  0  <  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) ) | 
						
							| 166 | 162 163 164 165 | divgt0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  0  <  ( 𝑦  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) ) ) | 
						
							| 167 |  | elnnz | ⊢ ( ( 𝑦  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) )  ∈  ℕ  ↔  ( ( 𝑦  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) )  ∈  ℤ  ∧  0  <  ( 𝑦  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) ) ) ) | 
						
							| 168 | 161 166 167 | sylanbrc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑦  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) )  ∈  ℕ ) | 
						
							| 169 |  | pcndvds2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑦  ∈  ℕ )  →  ¬  𝑃  ∥  ( 𝑦  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) ) ) | 
						
							| 170 | 23 50 169 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ¬  𝑃  ∥  ( 𝑦  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) ) ) | 
						
							| 171 | 168 170 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑦  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) )  ∈  ℕ  ∧  ¬  𝑃  ∥  ( 𝑦  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑦 ) ) ) ) ) | 
						
							| 172 |  | pczdvds | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑧  ≠  0 ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  ∥  𝑧 ) | 
						
							| 173 | 23 97 108 172 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  ∥  𝑧 ) | 
						
							| 174 | 111 | nnzd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  ∈  ℤ ) | 
						
							| 175 |  | dvdsval2 | ⊢ ( ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  ∈  ℤ  ∧  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  ≠  0  ∧  𝑧  ∈  ℤ )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  ∥  𝑧  ↔  ( 𝑧  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) ) )  ∈  ℤ ) ) | 
						
							| 176 | 174 119 97 175 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) )  ∥  𝑧  ↔  ( 𝑧  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) ) )  ∈  ℤ ) ) | 
						
							| 177 | 173 176 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑧  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) ) )  ∈  ℤ ) | 
						
							| 178 |  | pczndvds2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑧  ∈  ℤ  ∧  𝑧  ≠  0 ) )  →  ¬  𝑃  ∥  ( 𝑧  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) ) ) ) | 
						
							| 179 | 23 97 108 178 | syl12anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ¬  𝑃  ∥  ( 𝑧  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) ) ) ) | 
						
							| 180 | 177 179 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑧  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) ) )  ∈  ℤ  ∧  ¬  𝑃  ∥  ( 𝑧  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑧 ) ) ) ) ) | 
						
							| 181 |  | pcdvds | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑤  ∈  ℕ )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) )  ∥  𝑤 ) | 
						
							| 182 | 23 100 181 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) )  ∥  𝑤 ) | 
						
							| 183 | 117 | nnzd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) )  ∈  ℤ ) | 
						
							| 184 | 100 | nnzd | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑤  ∈  ℤ ) | 
						
							| 185 |  | dvdsval2 | ⊢ ( ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) )  ∈  ℤ  ∧  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) )  ≠  0  ∧  𝑤  ∈  ℤ )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) )  ∥  𝑤  ↔  ( 𝑤  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) )  ∈  ℤ ) ) | 
						
							| 186 | 183 120 184 185 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) )  ∥  𝑤  ↔  ( 𝑤  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) )  ∈  ℤ ) ) | 
						
							| 187 | 182 186 | mpbid | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑤  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) )  ∈  ℤ ) | 
						
							| 188 | 100 | nnred | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  𝑤  ∈  ℝ ) | 
						
							| 189 | 117 | nnred | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) )  ∈  ℝ ) | 
						
							| 190 | 100 | nngt0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  0  <  𝑤 ) | 
						
							| 191 | 117 | nngt0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  0  <  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) ) | 
						
							| 192 | 188 189 190 191 | divgt0d | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  0  <  ( 𝑤  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) ) ) | 
						
							| 193 |  | elnnz | ⊢ ( ( 𝑤  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) )  ∈  ℕ  ↔  ( ( 𝑤  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) )  ∈  ℤ  ∧  0  <  ( 𝑤  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) ) ) ) | 
						
							| 194 | 187 192 193 | sylanbrc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑤  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) )  ∈  ℕ ) | 
						
							| 195 |  | pcndvds2 | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑤  ∈  ℕ )  →  ¬  𝑃  ∥  ( 𝑤  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) ) ) | 
						
							| 196 | 23 100 195 | syl2anc | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ¬  𝑃  ∥  ( 𝑤  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) ) ) | 
						
							| 197 | 194 196 | jca | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( ( 𝑤  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) )  ∈  ℕ  ∧  ¬  𝑃  ∥  ( 𝑤  /  ( 𝑃 ↑ ( 𝑃  pCnt  𝑤 ) ) ) ) ) | 
						
							| 198 | 23 96 142 145 154 171 180 197 | pcaddlem | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ )  ∧  ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) ) ) )  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 199 | 198 | expr | ⊢ ( ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  ∧  ( 𝑦  ∈  ℕ  ∧  𝑤  ∈  ℕ ) )  →  ( ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) )  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 200 | 199 | rexlimdvva | ⊢ ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( ∃ 𝑦  ∈  ℕ ∃ 𝑤  ∈  ℕ ( 𝐴  =  ( 𝑥  /  𝑦 )  ∧  𝐵  =  ( 𝑧  /  𝑤 ) )  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 201 | 22 200 | biimtrrid | ⊢ ( ( ( 𝜑  ∧  𝐵  ≠  0 )  ∧  ( 𝑥  ∈  ℤ  ∧  𝑧  ∈  ℤ ) )  →  ( ( ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 )  ∧  ∃ 𝑤  ∈  ℕ 𝐵  =  ( 𝑧  /  𝑤 ) )  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 202 | 201 | rexlimdvva | ⊢ ( ( 𝜑  ∧  𝐵  ≠  0 )  →  ( ∃ 𝑥  ∈  ℤ ∃ 𝑧  ∈  ℤ ( ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 )  ∧  ∃ 𝑤  ∈  ℕ 𝐵  =  ( 𝑧  /  𝑤 ) )  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 203 | 21 202 | biimtrrid | ⊢ ( ( 𝜑  ∧  𝐵  ≠  0 )  →  ( ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 )  ∧  ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℕ 𝐵  =  ( 𝑧  /  𝑤 ) )  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 204 | 20 203 | pm2.61dane | ⊢ ( 𝜑  →  ( ( ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 )  ∧  ∃ 𝑧  ∈  ℤ ∃ 𝑤  ∈  ℕ 𝐵  =  ( 𝑧  /  𝑤 ) )  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 205 | 6 8 204 | mp2and | ⊢ ( 𝜑  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) |