Step |
Hyp |
Ref |
Expression |
1 |
|
pcadd.1 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
2 |
|
pcadd.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℚ ) |
3 |
|
pcadd.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℚ ) |
4 |
|
pcadd.4 |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
5 |
|
elq |
⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
6 |
2 5
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
7 |
|
elq |
⊢ ( 𝐵 ∈ ℚ ↔ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) |
8 |
3 7
|
sylib |
⊢ ( 𝜑 → ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) |
9 |
|
pcxcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) |
10 |
1 2 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) |
11 |
10
|
xrleidd |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
12 |
11
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
13 |
|
oveq2 |
⊢ ( 𝐵 = 0 → ( 𝐴 + 𝐵 ) = ( 𝐴 + 0 ) ) |
14 |
|
qcn |
⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℂ ) |
15 |
2 14
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
16 |
15
|
addid1d |
⊢ ( 𝜑 → ( 𝐴 + 0 ) = 𝐴 ) |
17 |
13 16
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( 𝐴 + 𝐵 ) = 𝐴 ) |
18 |
17
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
19 |
12 18
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |
20 |
19
|
a1d |
⊢ ( ( 𝜑 ∧ 𝐵 = 0 ) → ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
21 |
|
reeanv |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑧 ∈ ℤ ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) ↔ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) ) |
22 |
|
reeanv |
⊢ ( ∃ 𝑦 ∈ ℕ ∃ 𝑤 ∈ ℕ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ↔ ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) ) |
23 |
1
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑃 ∈ ℙ ) |
24 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
25 |
23 24
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑃 ∈ ℕ ) |
26 |
|
simplrl |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑥 ∈ ℤ ) |
27 |
|
simprrl |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐴 = ( 𝑥 / 𝑦 ) ) |
28 |
|
pc0 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) = +∞ ) |
29 |
23 28
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 0 ) = +∞ ) |
30 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐵 ∈ ℚ ) |
31 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐵 ≠ 0 ) |
32 |
|
pcqcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℤ ) |
33 |
23 30 31 32
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℤ ) |
34 |
33
|
zred |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℝ ) |
35 |
|
ltpnf |
⊢ ( ( 𝑃 pCnt 𝐵 ) ∈ ℝ → ( 𝑃 pCnt 𝐵 ) < +∞ ) |
36 |
|
rexr |
⊢ ( ( 𝑃 pCnt 𝐵 ) ∈ ℝ → ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) |
37 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
38 |
|
xrltnle |
⊢ ( ( ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ∧ +∞ ∈ ℝ* ) → ( ( 𝑃 pCnt 𝐵 ) < +∞ ↔ ¬ +∞ ≤ ( 𝑃 pCnt 𝐵 ) ) ) |
39 |
36 37 38
|
sylancl |
⊢ ( ( 𝑃 pCnt 𝐵 ) ∈ ℝ → ( ( 𝑃 pCnt 𝐵 ) < +∞ ↔ ¬ +∞ ≤ ( 𝑃 pCnt 𝐵 ) ) ) |
40 |
35 39
|
mpbid |
⊢ ( ( 𝑃 pCnt 𝐵 ) ∈ ℝ → ¬ +∞ ≤ ( 𝑃 pCnt 𝐵 ) ) |
41 |
34 40
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ +∞ ≤ ( 𝑃 pCnt 𝐵 ) ) |
42 |
29 41
|
eqnbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ ( 𝑃 pCnt 0 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
43 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
44 |
|
oveq2 |
⊢ ( 𝐴 = 0 → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt 0 ) ) |
45 |
44
|
breq1d |
⊢ ( 𝐴 = 0 → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ↔ ( 𝑃 pCnt 0 ) ≤ ( 𝑃 pCnt 𝐵 ) ) ) |
46 |
43 45
|
syl5ibcom |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐴 = 0 → ( 𝑃 pCnt 0 ) ≤ ( 𝑃 pCnt 𝐵 ) ) ) |
47 |
46
|
necon3bd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ¬ ( 𝑃 pCnt 0 ) ≤ ( 𝑃 pCnt 𝐵 ) → 𝐴 ≠ 0 ) ) |
48 |
42 47
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐴 ≠ 0 ) |
49 |
27 48
|
eqnetrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑥 / 𝑦 ) ≠ 0 ) |
50 |
|
simprll |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑦 ∈ ℕ ) |
51 |
50
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑦 ∈ ℂ ) |
52 |
50
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑦 ≠ 0 ) |
53 |
51 52
|
div0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 0 / 𝑦 ) = 0 ) |
54 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = ( 0 / 𝑦 ) ) |
55 |
54
|
eqeq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 / 𝑦 ) = 0 ↔ ( 0 / 𝑦 ) = 0 ) ) |
56 |
53 55
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = 0 ) ) |
57 |
56
|
necon3d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 / 𝑦 ) ≠ 0 → 𝑥 ≠ 0 ) ) |
58 |
49 57
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑥 ≠ 0 ) |
59 |
|
pczcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℕ0 ) |
60 |
23 26 58 59
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℕ0 ) |
61 |
25 60
|
nnexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∈ ℕ ) |
62 |
61
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∈ ℂ ) |
63 |
62 51
|
mulcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) · 𝑦 ) = ( 𝑦 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) |
64 |
63
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) · 𝑦 ) ) = ( ( 𝑥 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) / ( 𝑦 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) ) |
65 |
26
|
zcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑥 ∈ ℂ ) |
66 |
23 50
|
pccld |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑦 ) ∈ ℕ0 ) |
67 |
25 66
|
nnexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∈ ℕ ) |
68 |
67
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∈ ℂ ) |
69 |
61
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ≠ 0 ) |
70 |
67
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ≠ 0 ) |
71 |
65 62 51 68 69 70 52
|
divdivdivd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) / ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) = ( ( 𝑥 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) · 𝑦 ) ) ) |
72 |
27
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) ) |
73 |
|
pcdiv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
74 |
23 26 58 50 73
|
syl121anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt ( 𝑥 / 𝑦 ) ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
75 |
72 74
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐴 ) = ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) |
76 |
75
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) = ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) ) |
77 |
25
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑃 ∈ ℂ ) |
78 |
25
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑃 ≠ 0 ) |
79 |
66
|
nn0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑦 ) ∈ ℤ ) |
80 |
60
|
nn0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑥 ) ∈ ℤ ) |
81 |
77 78 79 80
|
expsubd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑥 ) − ( 𝑃 pCnt 𝑦 ) ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) |
82 |
76 81
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) |
83 |
82
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐴 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) = ( 𝐴 / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) |
84 |
27
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐴 / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) = ( ( 𝑥 / 𝑦 ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) |
85 |
65 51 62 68 52 70 69
|
divdivdivd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 / 𝑦 ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) = ( ( 𝑥 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) / ( 𝑦 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) ) |
86 |
83 84 85
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐴 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) = ( ( 𝑥 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) / ( 𝑦 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) ) |
87 |
64 71 86
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) / ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) = ( 𝐴 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) |
88 |
87
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) · ( ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) / ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) · ( 𝐴 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) ) |
89 |
2
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐴 ∈ ℚ ) |
90 |
89 14
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐴 ∈ ℂ ) |
91 |
|
pcqcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℤ ) |
92 |
23 89 48 91
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℤ ) |
93 |
77 78 92
|
expclzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℂ ) |
94 |
77 78 92
|
expne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ≠ 0 ) |
95 |
90 93 94
|
divcan2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) · ( 𝐴 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ) ) = 𝐴 ) |
96 |
88 95
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐴 = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) · ( ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) / ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) ) |
97 |
|
simplrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑧 ∈ ℤ ) |
98 |
|
simprrr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐵 = ( 𝑧 / 𝑤 ) ) |
99 |
98 31
|
eqnetrrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑧 / 𝑤 ) ≠ 0 ) |
100 |
|
simprlr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑤 ∈ ℕ ) |
101 |
100
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑤 ∈ ℂ ) |
102 |
100
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑤 ≠ 0 ) |
103 |
101 102
|
div0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 0 / 𝑤 ) = 0 ) |
104 |
|
oveq1 |
⊢ ( 𝑧 = 0 → ( 𝑧 / 𝑤 ) = ( 0 / 𝑤 ) ) |
105 |
104
|
eqeq1d |
⊢ ( 𝑧 = 0 → ( ( 𝑧 / 𝑤 ) = 0 ↔ ( 0 / 𝑤 ) = 0 ) ) |
106 |
103 105
|
syl5ibrcom |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑧 = 0 → ( 𝑧 / 𝑤 ) = 0 ) ) |
107 |
106
|
necon3d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 / 𝑤 ) ≠ 0 → 𝑧 ≠ 0 ) ) |
108 |
99 107
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑧 ≠ 0 ) |
109 |
|
pczcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ) → ( 𝑃 pCnt 𝑧 ) ∈ ℕ0 ) |
110 |
23 97 108 109
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑧 ) ∈ ℕ0 ) |
111 |
25 110
|
nnexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∈ ℕ ) |
112 |
111
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∈ ℂ ) |
113 |
112 101
|
mulcomd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) · 𝑤 ) = ( 𝑤 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) |
114 |
113
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) · 𝑤 ) ) = ( ( 𝑧 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) / ( 𝑤 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) ) |
115 |
97
|
zcnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑧 ∈ ℂ ) |
116 |
23 100
|
pccld |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑤 ) ∈ ℕ0 ) |
117 |
25 116
|
nnexpcld |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∈ ℕ ) |
118 |
117
|
nncnd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∈ ℂ ) |
119 |
111
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ≠ 0 ) |
120 |
117
|
nnne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ≠ 0 ) |
121 |
115 112 101 118 119 120 102
|
divdivdivd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) / ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) = ( ( 𝑧 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) · 𝑤 ) ) ) |
122 |
98
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐵 ) = ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) ) |
123 |
|
pcdiv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ∧ 𝑤 ∈ ℕ ) → ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) = ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) |
124 |
23 97 108 100 123
|
syl121anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt ( 𝑧 / 𝑤 ) ) = ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) |
125 |
122 124
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐵 ) = ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) |
126 |
125
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) = ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) ) |
127 |
116
|
nn0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑤 ) ∈ ℤ ) |
128 |
110
|
nn0zd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝑧 ) ∈ ℤ ) |
129 |
77 78 127 128
|
expsubd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( ( 𝑃 pCnt 𝑧 ) − ( 𝑃 pCnt 𝑤 ) ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) |
130 |
126 129
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) |
131 |
130
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐵 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ) = ( 𝐵 / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) |
132 |
98
|
oveq1d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐵 / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) = ( ( 𝑧 / 𝑤 ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) |
133 |
115 101 112 118 102 120 119
|
divdivdivd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 / 𝑤 ) / ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) = ( ( 𝑧 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) / ( 𝑤 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) ) |
134 |
131 132 133
|
3eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝐵 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ) = ( ( 𝑧 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) / ( 𝑤 · ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) ) |
135 |
114 121 134
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) / ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) = ( 𝐵 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ) ) |
136 |
135
|
oveq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) · ( ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) / ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) · ( 𝐵 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ) ) ) |
137 |
|
qcn |
⊢ ( 𝐵 ∈ ℚ → 𝐵 ∈ ℂ ) |
138 |
30 137
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐵 ∈ ℂ ) |
139 |
77 78 33
|
expclzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ∈ ℂ ) |
140 |
77 78 33
|
expne0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ≠ 0 ) |
141 |
138 139 140
|
divcan2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) · ( 𝐵 / ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) ) ) = 𝐵 ) |
142 |
136 141
|
eqtr2d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝐵 = ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐵 ) ) · ( ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) / ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) ) |
143 |
|
eluz |
⊢ ( ( ( 𝑃 pCnt 𝐴 ) ∈ ℤ ∧ ( 𝑃 pCnt 𝐵 ) ∈ ℤ ) → ( ( 𝑃 pCnt 𝐵 ) ∈ ( ℤ≥ ‘ ( 𝑃 pCnt 𝐴 ) ) ↔ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) ) |
144 |
92 33 143
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 pCnt 𝐵 ) ∈ ( ℤ≥ ‘ ( 𝑃 pCnt 𝐴 ) ) ↔ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) ) |
145 |
43 144
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ( ℤ≥ ‘ ( 𝑃 pCnt 𝐴 ) ) ) |
146 |
|
pczdvds |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∥ 𝑥 ) |
147 |
23 26 58 146
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∥ 𝑥 ) |
148 |
61
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∈ ℤ ) |
149 |
|
dvdsval2 |
⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ≠ 0 ∧ 𝑥 ∈ ℤ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∥ 𝑥 ↔ ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ∈ ℤ ) ) |
150 |
148 69 26 149
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ∥ 𝑥 ↔ ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ∈ ℤ ) ) |
151 |
147 150
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ∈ ℤ ) |
152 |
|
pczndvds2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ¬ 𝑃 ∥ ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) |
153 |
23 26 58 152
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ 𝑃 ∥ ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) |
154 |
151 153
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ∈ ℤ ∧ ¬ 𝑃 ∥ ( 𝑥 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑥 ) ) ) ) ) |
155 |
|
pcdvds |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∥ 𝑦 ) |
156 |
23 50 155
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∥ 𝑦 ) |
157 |
67
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∈ ℤ ) |
158 |
50
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑦 ∈ ℤ ) |
159 |
|
dvdsval2 |
⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ≠ 0 ∧ 𝑦 ∈ ℤ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∥ 𝑦 ↔ ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℤ ) ) |
160 |
157 70 158 159
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∥ 𝑦 ↔ ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℤ ) ) |
161 |
156 160
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℤ ) |
162 |
50
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑦 ∈ ℝ ) |
163 |
67
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ∈ ℝ ) |
164 |
50
|
nngt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < 𝑦 ) |
165 |
67
|
nngt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) |
166 |
162 163 164 165
|
divgt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) |
167 |
|
elnnz |
⊢ ( ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℕ ↔ ( ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℤ ∧ 0 < ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) |
168 |
161 166 167
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℕ ) |
169 |
|
pcndvds2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑦 ∈ ℕ ) → ¬ 𝑃 ∥ ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) |
170 |
23 50 169
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ 𝑃 ∥ ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) |
171 |
168 170
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ∈ ℕ ∧ ¬ 𝑃 ∥ ( 𝑦 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑦 ) ) ) ) ) |
172 |
|
pczdvds |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∥ 𝑧 ) |
173 |
23 97 108 172
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∥ 𝑧 ) |
174 |
111
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∈ ℤ ) |
175 |
|
dvdsval2 |
⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ≠ 0 ∧ 𝑧 ∈ ℤ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∥ 𝑧 ↔ ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ∈ ℤ ) ) |
176 |
174 119 97 175
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ∥ 𝑧 ↔ ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ∈ ℤ ) ) |
177 |
173 176
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ∈ ℤ ) |
178 |
|
pczndvds2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑧 ∈ ℤ ∧ 𝑧 ≠ 0 ) ) → ¬ 𝑃 ∥ ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) |
179 |
23 97 108 178
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ 𝑃 ∥ ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) |
180 |
177 179
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ∈ ℤ ∧ ¬ 𝑃 ∥ ( 𝑧 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑧 ) ) ) ) ) |
181 |
|
pcdvds |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑤 ∈ ℕ ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∥ 𝑤 ) |
182 |
23 100 181
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∥ 𝑤 ) |
183 |
117
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∈ ℤ ) |
184 |
100
|
nnzd |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑤 ∈ ℤ ) |
185 |
|
dvdsval2 |
⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∈ ℤ ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ≠ 0 ∧ 𝑤 ∈ ℤ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∥ 𝑤 ↔ ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℤ ) ) |
186 |
183 120 184 185
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∥ 𝑤 ↔ ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℤ ) ) |
187 |
182 186
|
mpbid |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℤ ) |
188 |
100
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 𝑤 ∈ ℝ ) |
189 |
117
|
nnred |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ∈ ℝ ) |
190 |
100
|
nngt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < 𝑤 ) |
191 |
117
|
nngt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) |
192 |
188 189 190 191
|
divgt0d |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → 0 < ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) |
193 |
|
elnnz |
⊢ ( ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℕ ↔ ( ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℤ ∧ 0 < ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) |
194 |
187 192 193
|
sylanbrc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℕ ) |
195 |
|
pcndvds2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑤 ∈ ℕ ) → ¬ 𝑃 ∥ ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) |
196 |
23 100 195
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ¬ 𝑃 ∥ ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) |
197 |
194 196
|
jca |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ∈ ℕ ∧ ¬ 𝑃 ∥ ( 𝑤 / ( 𝑃 ↑ ( 𝑃 pCnt 𝑤 ) ) ) ) ) |
198 |
23 96 142 145 154 171 180 197
|
pcaddlem |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |
199 |
198
|
expr |
⊢ ( ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
200 |
199
|
rexlimdvva |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ∃ 𝑦 ∈ ℕ ∃ 𝑤 ∈ ℕ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
201 |
22 200
|
syl5bir |
⊢ ( ( ( 𝜑 ∧ 𝐵 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ) → ( ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
202 |
201
|
rexlimdvva |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 0 ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑧 ∈ ℤ ( ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
203 |
21 202
|
syl5bir |
⊢ ( ( 𝜑 ∧ 𝐵 ≠ 0 ) → ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
204 |
20 203
|
pm2.61dane |
⊢ ( 𝜑 → ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
205 |
6 8 204
|
mp2and |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |