Step |
Hyp |
Ref |
Expression |
1 |
|
pcadd2.1 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
2 |
|
pcadd2.2 |
⊢ ( 𝜑 → 𝐴 ∈ ℚ ) |
3 |
|
pcadd2.3 |
⊢ ( 𝜑 → 𝐵 ∈ ℚ ) |
4 |
|
pcadd2.4 |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) < ( 𝑃 pCnt 𝐵 ) ) |
5 |
|
pcxcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) |
6 |
1 2 5
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) |
7 |
|
qaddcl |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) |
8 |
2 3 7
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ ℚ ) |
9 |
|
pcxcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 + 𝐵 ) ∈ ℚ ) → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ∈ ℝ* ) |
10 |
1 8 9
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ∈ ℝ* ) |
11 |
|
pcxcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ ) → ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) |
12 |
1 3 11
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) |
13 |
6 12 4
|
xrltled |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
14 |
1 2 3 13
|
pcadd |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |
15 |
|
qnegcl |
⊢ ( 𝐵 ∈ ℚ → - 𝐵 ∈ ℚ ) |
16 |
3 15
|
syl |
⊢ ( 𝜑 → - 𝐵 ∈ ℚ ) |
17 |
|
xrltnle |
⊢ ( ( ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ∧ ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) → ( ( 𝑃 pCnt 𝐴 ) < ( 𝑃 pCnt 𝐵 ) ↔ ¬ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) ) |
18 |
6 12 17
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 pCnt 𝐴 ) < ( 𝑃 pCnt 𝐵 ) ↔ ¬ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) ) |
19 |
4 18
|
mpbid |
⊢ ( 𝜑 → ¬ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
20 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) → 𝑃 ∈ ℙ ) |
21 |
16
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) → - 𝐵 ∈ ℚ ) |
22 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) |
23 |
|
pcneg |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ ) → ( 𝑃 pCnt - 𝐵 ) = ( 𝑃 pCnt 𝐵 ) ) |
24 |
1 3 23
|
syl2anc |
⊢ ( 𝜑 → ( 𝑃 pCnt - 𝐵 ) = ( 𝑃 pCnt 𝐵 ) ) |
25 |
24
|
breq1d |
⊢ ( 𝜑 → ( ( 𝑃 pCnt - 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ↔ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
26 |
25
|
biimpar |
⊢ ( ( 𝜑 ∧ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) → ( 𝑃 pCnt - 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |
27 |
20 21 22 26
|
pcadd |
⊢ ( ( 𝜑 ∧ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) → ( 𝑃 pCnt - 𝐵 ) ≤ ( 𝑃 pCnt ( - 𝐵 + ( 𝐴 + 𝐵 ) ) ) ) |
28 |
27
|
ex |
⊢ ( 𝜑 → ( ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) → ( 𝑃 pCnt - 𝐵 ) ≤ ( 𝑃 pCnt ( - 𝐵 + ( 𝐴 + 𝐵 ) ) ) ) ) |
29 |
|
qcn |
⊢ ( 𝐵 ∈ ℚ → 𝐵 ∈ ℂ ) |
30 |
3 29
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
31 |
30
|
negcld |
⊢ ( 𝜑 → - 𝐵 ∈ ℂ ) |
32 |
|
qcn |
⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℂ ) |
33 |
2 32
|
syl |
⊢ ( 𝜑 → 𝐴 ∈ ℂ ) |
34 |
31 33 30
|
add12d |
⊢ ( 𝜑 → ( - 𝐵 + ( 𝐴 + 𝐵 ) ) = ( 𝐴 + ( - 𝐵 + 𝐵 ) ) ) |
35 |
31 30
|
addcomd |
⊢ ( 𝜑 → ( - 𝐵 + 𝐵 ) = ( 𝐵 + - 𝐵 ) ) |
36 |
30
|
negidd |
⊢ ( 𝜑 → ( 𝐵 + - 𝐵 ) = 0 ) |
37 |
35 36
|
eqtrd |
⊢ ( 𝜑 → ( - 𝐵 + 𝐵 ) = 0 ) |
38 |
37
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 + ( - 𝐵 + 𝐵 ) ) = ( 𝐴 + 0 ) ) |
39 |
33
|
addid1d |
⊢ ( 𝜑 → ( 𝐴 + 0 ) = 𝐴 ) |
40 |
34 38 39
|
3eqtrd |
⊢ ( 𝜑 → ( - 𝐵 + ( 𝐴 + 𝐵 ) ) = 𝐴 ) |
41 |
40
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 pCnt ( - 𝐵 + ( 𝐴 + 𝐵 ) ) ) = ( 𝑃 pCnt 𝐴 ) ) |
42 |
24 41
|
breq12d |
⊢ ( 𝜑 → ( ( 𝑃 pCnt - 𝐵 ) ≤ ( 𝑃 pCnt ( - 𝐵 + ( 𝐴 + 𝐵 ) ) ) ↔ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) ) |
43 |
28 42
|
sylibd |
⊢ ( 𝜑 → ( ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) → ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) ) |
44 |
19 43
|
mtod |
⊢ ( 𝜑 → ¬ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |
45 |
|
xrltnle |
⊢ ( ( ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ∈ ℝ* ∧ ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) → ( ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) < ( 𝑃 pCnt 𝐵 ) ↔ ¬ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
46 |
10 12 45
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) < ( 𝑃 pCnt 𝐵 ) ↔ ¬ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) ) |
47 |
44 46
|
mpbird |
⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) < ( 𝑃 pCnt 𝐵 ) ) |
48 |
10 12 47
|
xrltled |
⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
49 |
48 24
|
breqtrrd |
⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ≤ ( 𝑃 pCnt - 𝐵 ) ) |
50 |
1 8 16 49
|
pcadd |
⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ≤ ( 𝑃 pCnt ( ( 𝐴 + 𝐵 ) + - 𝐵 ) ) ) |
51 |
33 30 31
|
addassd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) + - 𝐵 ) = ( 𝐴 + ( 𝐵 + - 𝐵 ) ) ) |
52 |
36
|
oveq2d |
⊢ ( 𝜑 → ( 𝐴 + ( 𝐵 + - 𝐵 ) ) = ( 𝐴 + 0 ) ) |
53 |
51 52 39
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) + - 𝐵 ) = 𝐴 ) |
54 |
53
|
oveq2d |
⊢ ( 𝜑 → ( 𝑃 pCnt ( ( 𝐴 + 𝐵 ) + - 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
55 |
50 54
|
breqtrd |
⊢ ( 𝜑 → ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
56 |
6 10 14 55
|
xrletrid |
⊢ ( 𝜑 → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt ( 𝐴 + 𝐵 ) ) ) |