| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pcadd2.1 | ⊢ ( 𝜑  →  𝑃  ∈  ℙ ) | 
						
							| 2 |  | pcadd2.2 | ⊢ ( 𝜑  →  𝐴  ∈  ℚ ) | 
						
							| 3 |  | pcadd2.3 | ⊢ ( 𝜑  →  𝐵  ∈  ℚ ) | 
						
							| 4 |  | pcadd2.4 | ⊢ ( 𝜑  →  ( 𝑃  pCnt  𝐴 )  <  ( 𝑃  pCnt  𝐵 ) ) | 
						
							| 5 |  | pcxcl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐴  ∈  ℚ )  →  ( 𝑃  pCnt  𝐴 )  ∈  ℝ* ) | 
						
							| 6 | 1 2 5 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  pCnt  𝐴 )  ∈  ℝ* ) | 
						
							| 7 |  | qaddcl | ⊢ ( ( 𝐴  ∈  ℚ  ∧  𝐵  ∈  ℚ )  →  ( 𝐴  +  𝐵 )  ∈  ℚ ) | 
						
							| 8 | 2 3 7 | syl2anc | ⊢ ( 𝜑  →  ( 𝐴  +  𝐵 )  ∈  ℚ ) | 
						
							| 9 |  | pcxcl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  +  𝐵 )  ∈  ℚ )  →  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) )  ∈  ℝ* ) | 
						
							| 10 | 1 8 9 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) )  ∈  ℝ* ) | 
						
							| 11 |  | pcxcl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐵  ∈  ℚ )  →  ( 𝑃  pCnt  𝐵 )  ∈  ℝ* ) | 
						
							| 12 | 1 3 11 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  pCnt  𝐵 )  ∈  ℝ* ) | 
						
							| 13 | 6 12 4 | xrltled | ⊢ ( 𝜑  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  𝐵 ) ) | 
						
							| 14 | 1 2 3 13 | pcadd | ⊢ ( 𝜑  →  ( 𝑃  pCnt  𝐴 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 15 |  | qnegcl | ⊢ ( 𝐵  ∈  ℚ  →  - 𝐵  ∈  ℚ ) | 
						
							| 16 | 3 15 | syl | ⊢ ( 𝜑  →  - 𝐵  ∈  ℚ ) | 
						
							| 17 |  | xrltnle | ⊢ ( ( ( 𝑃  pCnt  𝐴 )  ∈  ℝ*  ∧  ( 𝑃  pCnt  𝐵 )  ∈  ℝ* )  →  ( ( 𝑃  pCnt  𝐴 )  <  ( 𝑃  pCnt  𝐵 )  ↔  ¬  ( 𝑃  pCnt  𝐵 )  ≤  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 18 | 6 12 17 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑃  pCnt  𝐴 )  <  ( 𝑃  pCnt  𝐵 )  ↔  ¬  ( 𝑃  pCnt  𝐵 )  ≤  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 19 | 4 18 | mpbid | ⊢ ( 𝜑  →  ¬  ( 𝑃  pCnt  𝐵 )  ≤  ( 𝑃  pCnt  𝐴 ) ) | 
						
							| 20 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑃  pCnt  𝐵 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) )  →  𝑃  ∈  ℙ ) | 
						
							| 21 | 16 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑃  pCnt  𝐵 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) )  →  - 𝐵  ∈  ℚ ) | 
						
							| 22 | 8 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑃  pCnt  𝐵 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) )  →  ( 𝐴  +  𝐵 )  ∈  ℚ ) | 
						
							| 23 |  | pcneg | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝐵  ∈  ℚ )  →  ( 𝑃  pCnt  - 𝐵 )  =  ( 𝑃  pCnt  𝐵 ) ) | 
						
							| 24 | 1 3 23 | syl2anc | ⊢ ( 𝜑  →  ( 𝑃  pCnt  - 𝐵 )  =  ( 𝑃  pCnt  𝐵 ) ) | 
						
							| 25 | 24 | breq1d | ⊢ ( 𝜑  →  ( ( 𝑃  pCnt  - 𝐵 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) )  ↔  ( 𝑃  pCnt  𝐵 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 26 | 25 | biimpar | ⊢ ( ( 𝜑  ∧  ( 𝑃  pCnt  𝐵 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) )  →  ( 𝑃  pCnt  - 𝐵 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 27 | 20 21 22 26 | pcadd | ⊢ ( ( 𝜑  ∧  ( 𝑃  pCnt  𝐵 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) )  →  ( 𝑃  pCnt  - 𝐵 )  ≤  ( 𝑃  pCnt  ( - 𝐵  +  ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 28 | 27 | ex | ⊢ ( 𝜑  →  ( ( 𝑃  pCnt  𝐵 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) )  →  ( 𝑃  pCnt  - 𝐵 )  ≤  ( 𝑃  pCnt  ( - 𝐵  +  ( 𝐴  +  𝐵 ) ) ) ) ) | 
						
							| 29 |  | qcn | ⊢ ( 𝐵  ∈  ℚ  →  𝐵  ∈  ℂ ) | 
						
							| 30 | 3 29 | syl | ⊢ ( 𝜑  →  𝐵  ∈  ℂ ) | 
						
							| 31 | 30 | negcld | ⊢ ( 𝜑  →  - 𝐵  ∈  ℂ ) | 
						
							| 32 |  | qcn | ⊢ ( 𝐴  ∈  ℚ  →  𝐴  ∈  ℂ ) | 
						
							| 33 | 2 32 | syl | ⊢ ( 𝜑  →  𝐴  ∈  ℂ ) | 
						
							| 34 | 31 33 30 | add12d | ⊢ ( 𝜑  →  ( - 𝐵  +  ( 𝐴  +  𝐵 ) )  =  ( 𝐴  +  ( - 𝐵  +  𝐵 ) ) ) | 
						
							| 35 | 31 30 | addcomd | ⊢ ( 𝜑  →  ( - 𝐵  +  𝐵 )  =  ( 𝐵  +  - 𝐵 ) ) | 
						
							| 36 | 30 | negidd | ⊢ ( 𝜑  →  ( 𝐵  +  - 𝐵 )  =  0 ) | 
						
							| 37 | 35 36 | eqtrd | ⊢ ( 𝜑  →  ( - 𝐵  +  𝐵 )  =  0 ) | 
						
							| 38 | 37 | oveq2d | ⊢ ( 𝜑  →  ( 𝐴  +  ( - 𝐵  +  𝐵 ) )  =  ( 𝐴  +  0 ) ) | 
						
							| 39 | 33 | addridd | ⊢ ( 𝜑  →  ( 𝐴  +  0 )  =  𝐴 ) | 
						
							| 40 | 34 38 39 | 3eqtrd | ⊢ ( 𝜑  →  ( - 𝐵  +  ( 𝐴  +  𝐵 ) )  =  𝐴 ) | 
						
							| 41 | 40 | oveq2d | ⊢ ( 𝜑  →  ( 𝑃  pCnt  ( - 𝐵  +  ( 𝐴  +  𝐵 ) ) )  =  ( 𝑃  pCnt  𝐴 ) ) | 
						
							| 42 | 24 41 | breq12d | ⊢ ( 𝜑  →  ( ( 𝑃  pCnt  - 𝐵 )  ≤  ( 𝑃  pCnt  ( - 𝐵  +  ( 𝐴  +  𝐵 ) ) )  ↔  ( 𝑃  pCnt  𝐵 )  ≤  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 43 | 28 42 | sylibd | ⊢ ( 𝜑  →  ( ( 𝑃  pCnt  𝐵 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) )  →  ( 𝑃  pCnt  𝐵 )  ≤  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 44 | 19 43 | mtod | ⊢ ( 𝜑  →  ¬  ( 𝑃  pCnt  𝐵 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) | 
						
							| 45 |  | xrltnle | ⊢ ( ( ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) )  ∈  ℝ*  ∧  ( 𝑃  pCnt  𝐵 )  ∈  ℝ* )  →  ( ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) )  <  ( 𝑃  pCnt  𝐵 )  ↔  ¬  ( 𝑃  pCnt  𝐵 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 46 | 10 12 45 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) )  <  ( 𝑃  pCnt  𝐵 )  ↔  ¬  ( 𝑃  pCnt  𝐵 )  ≤  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) ) | 
						
							| 47 | 44 46 | mpbird | ⊢ ( 𝜑  →  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) )  <  ( 𝑃  pCnt  𝐵 ) ) | 
						
							| 48 | 10 12 47 | xrltled | ⊢ ( 𝜑  →  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) )  ≤  ( 𝑃  pCnt  𝐵 ) ) | 
						
							| 49 | 48 24 | breqtrrd | ⊢ ( 𝜑  →  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) )  ≤  ( 𝑃  pCnt  - 𝐵 ) ) | 
						
							| 50 | 1 8 16 49 | pcadd | ⊢ ( 𝜑  →  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) )  ≤  ( 𝑃  pCnt  ( ( 𝐴  +  𝐵 )  +  - 𝐵 ) ) ) | 
						
							| 51 | 33 30 31 | addassd | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  +  - 𝐵 )  =  ( 𝐴  +  ( 𝐵  +  - 𝐵 ) ) ) | 
						
							| 52 | 36 | oveq2d | ⊢ ( 𝜑  →  ( 𝐴  +  ( 𝐵  +  - 𝐵 ) )  =  ( 𝐴  +  0 ) ) | 
						
							| 53 | 51 52 39 | 3eqtrd | ⊢ ( 𝜑  →  ( ( 𝐴  +  𝐵 )  +  - 𝐵 )  =  𝐴 ) | 
						
							| 54 | 53 | oveq2d | ⊢ ( 𝜑  →  ( 𝑃  pCnt  ( ( 𝐴  +  𝐵 )  +  - 𝐵 ) )  =  ( 𝑃  pCnt  𝐴 ) ) | 
						
							| 55 | 50 54 | breqtrd | ⊢ ( 𝜑  →  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) )  ≤  ( 𝑃  pCnt  𝐴 ) ) | 
						
							| 56 | 6 10 14 55 | xrletrid | ⊢ ( 𝜑  →  ( 𝑃  pCnt  𝐴 )  =  ( 𝑃  pCnt  ( 𝐴  +  𝐵 ) ) ) |