Metamath Proof Explorer


Theorem pccld

Description: Closure of the prime power function. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses pccld.1 ( 𝜑𝑃 ∈ ℙ )
pccld.2 ( 𝜑𝑁 ∈ ℕ )
Assertion pccld ( 𝜑 → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 )

Proof

Step Hyp Ref Expression
1 pccld.1 ( 𝜑𝑃 ∈ ℙ )
2 pccld.2 ( 𝜑𝑁 ∈ ℕ )
3 pccl ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 )
4 1 2 3 syl2anc ( 𝜑 → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 )