| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝑃 ∈ ℙ ) |
| 2 |
|
simp2l |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
| 3 |
|
simp3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℕ ) |
| 4 |
|
znq |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) |
| 5 |
2 3 4
|
syl2anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) |
| 6 |
2
|
zcnd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
| 7 |
3
|
nncnd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
| 8 |
|
simp2r |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐴 ≠ 0 ) |
| 9 |
3
|
nnne0d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐵 ≠ 0 ) |
| 10 |
6 7 8 9
|
divne0d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ≠ 0 ) |
| 11 |
|
eqid |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) |
| 12 |
|
eqid |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) |
| 13 |
11 12
|
pcval |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 / 𝐵 ) ∈ ℚ ∧ ( 𝐴 / 𝐵 ) ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
| 14 |
1 5 10 13
|
syl12anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
| 15 |
|
eqid |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) |
| 16 |
15
|
pczpre |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) ) |
| 17 |
16
|
3adant3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝑃 pCnt 𝐴 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) ) |
| 18 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
| 19 |
|
nnne0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) |
| 20 |
18 19
|
jca |
⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) |
| 21 |
|
eqid |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) |
| 22 |
21
|
pczpre |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) |
| 23 |
20 22
|
sylan2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℕ ) → ( 𝑃 pCnt 𝐵 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) |
| 24 |
23
|
3adant2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝑃 pCnt 𝐵 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) |
| 25 |
17 24
|
oveq12d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) |
| 26 |
|
eqid |
⊢ ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) |
| 27 |
25 26
|
jctil |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) ) |
| 28 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 / 𝑦 ) = ( 𝐴 / 𝑦 ) ) |
| 29 |
28
|
eqeq2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ↔ ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝑦 ) ) ) |
| 30 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 ↔ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 ) ) |
| 31 |
30
|
rabbidv |
⊢ ( 𝑥 = 𝐴 → { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } ) |
| 32 |
31
|
supeq1d |
⊢ ( 𝑥 = 𝐴 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) ) |
| 33 |
32
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) |
| 34 |
33
|
eqeq2d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ↔ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 35 |
29 34
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
| 36 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 / 𝑦 ) = ( 𝐴 / 𝐵 ) ) |
| 37 |
36
|
eqeq2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝑦 ) ↔ ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ) ) |
| 38 |
|
breq2 |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 ↔ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 ) ) |
| 39 |
38
|
rabbidv |
⊢ ( 𝑦 = 𝐵 → { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } ) |
| 40 |
39
|
supeq1d |
⊢ ( 𝑦 = 𝐵 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) |
| 41 |
40
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) |
| 42 |
41
|
eqeq2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ↔ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) ) |
| 43 |
37 42
|
anbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) ) ) |
| 44 |
35 43
|
rspc2ev |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ∧ ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 45 |
2 3 27 44
|
syl3anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 46 |
|
ovex |
⊢ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ∈ V |
| 47 |
11 12
|
pceu |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 / 𝐵 ) ∈ ℚ ∧ ( 𝐴 / 𝐵 ) ≠ 0 ) ) → ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 48 |
1 5 10 47
|
syl12anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 49 |
|
eqeq1 |
⊢ ( 𝑧 = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) → ( 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ↔ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
| 50 |
49
|
anbi2d |
⊢ ( 𝑧 = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) → ( ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
| 51 |
50
|
2rexbidv |
⊢ ( 𝑧 = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
| 52 |
51
|
iota2 |
⊢ ( ( ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ∈ V ∧ ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ) ) |
| 53 |
46 48 52
|
sylancr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ) ) |
| 54 |
45 53
|
mpbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ) |
| 55 |
14 54
|
eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ) |