Step |
Hyp |
Ref |
Expression |
1 |
|
simp1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝑃 ∈ ℙ ) |
2 |
|
simp2l |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
3 |
|
simp3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℕ ) |
4 |
|
znq |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) |
5 |
2 3 4
|
syl2anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) |
6 |
2
|
zcnd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
7 |
3
|
nncnd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
8 |
|
simp2r |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐴 ≠ 0 ) |
9 |
3
|
nnne0d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → 𝐵 ≠ 0 ) |
10 |
6 7 8 9
|
divne0d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝐴 / 𝐵 ) ≠ 0 ) |
11 |
|
eqid |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) |
12 |
|
eqid |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) |
13 |
11 12
|
pcval |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 / 𝐵 ) ∈ ℚ ∧ ( 𝐴 / 𝐵 ) ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
14 |
1 5 10 13
|
syl12anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) = ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
15 |
|
eqid |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) |
16 |
15
|
pczpre |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝑃 pCnt 𝐴 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) ) |
18 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
19 |
|
nnne0 |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ≠ 0 ) |
20 |
18 19
|
jca |
⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) |
21 |
|
eqid |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) |
22 |
21
|
pczpre |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) |
23 |
20 22
|
sylan2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℕ ) → ( 𝑃 pCnt 𝐵 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) |
24 |
23
|
3adant2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝑃 pCnt 𝐵 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) |
25 |
17 24
|
oveq12d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) |
26 |
|
eqid |
⊢ ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) |
27 |
25 26
|
jctil |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) ) |
28 |
|
oveq1 |
⊢ ( 𝑥 = 𝐴 → ( 𝑥 / 𝑦 ) = ( 𝐴 / 𝑦 ) ) |
29 |
28
|
eqeq2d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ↔ ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝑦 ) ) ) |
30 |
|
breq2 |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 ↔ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 ) ) |
31 |
30
|
rabbidv |
⊢ ( 𝑥 = 𝐴 → { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } ) |
32 |
31
|
supeq1d |
⊢ ( 𝑥 = 𝐴 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) ) |
33 |
32
|
oveq1d |
⊢ ( 𝑥 = 𝐴 → ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) |
34 |
33
|
eqeq2d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ↔ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
35 |
29 34
|
anbi12d |
⊢ ( 𝑥 = 𝐴 → ( ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
36 |
|
oveq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐴 / 𝑦 ) = ( 𝐴 / 𝐵 ) ) |
37 |
36
|
eqeq2d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝑦 ) ↔ ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ) ) |
38 |
|
breq2 |
⊢ ( 𝑦 = 𝐵 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 ↔ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 ) ) |
39 |
38
|
rabbidv |
⊢ ( 𝑦 = 𝐵 → { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } ) |
40 |
39
|
supeq1d |
⊢ ( 𝑦 = 𝐵 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) |
41 |
40
|
oveq2d |
⊢ ( 𝑦 = 𝐵 → ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) |
42 |
41
|
eqeq2d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ↔ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) ) |
43 |
37 42
|
anbi12d |
⊢ ( 𝑦 = 𝐵 → ( ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) ) ) |
44 |
35 43
|
rspc2ev |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ ∧ ( ( 𝐴 / 𝐵 ) = ( 𝐴 / 𝐵 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐴 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝐵 } , ℝ , < ) ) ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
45 |
2 3 27 44
|
syl3anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
46 |
|
ovex |
⊢ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ∈ V |
47 |
11 12
|
pceu |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 / 𝐵 ) ∈ ℚ ∧ ( 𝐴 / 𝐵 ) ≠ 0 ) ) → ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
48 |
1 5 10 47
|
syl12anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
49 |
|
eqeq1 |
⊢ ( 𝑧 = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) → ( 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ↔ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) |
50 |
49
|
anbi2d |
⊢ ( 𝑧 = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) → ( ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
51 |
50
|
2rexbidv |
⊢ ( 𝑧 = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) ) |
52 |
51
|
iota2 |
⊢ ( ( ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ∈ V ∧ ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ) ) |
53 |
46 48 52
|
sylancr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ↔ ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ) ) |
54 |
45 53
|
mpbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( ℩ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( ( 𝐴 / 𝐵 ) = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) ) ) ) = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ) |
55 |
14 54
|
eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ∧ 𝐵 ∈ ℕ ) → ( 𝑃 pCnt ( 𝐴 / 𝐵 ) ) = ( ( 𝑃 pCnt 𝐴 ) − ( 𝑃 pCnt 𝐵 ) ) ) |