Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
⊢ 0 ∈ ℤ |
2 |
|
zq |
⊢ ( 0 ∈ ℤ → 0 ∈ ℚ ) |
3 |
1 2
|
ax-mp |
⊢ 0 ∈ ℚ |
4 |
|
pcxcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 0 ∈ ℚ ) → ( 𝑃 pCnt 0 ) ∈ ℝ* ) |
5 |
3 4
|
mpan2 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) ∈ ℝ* ) |
6 |
5
|
xrleidd |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) ≤ ( 𝑃 pCnt 0 ) ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → ( 𝑃 pCnt 0 ) ≤ ( 𝑃 pCnt 0 ) ) |
8 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → 𝐴 = 0 ) |
9 |
8
|
oveq2d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt 0 ) ) |
10 |
|
simplr3 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → 𝐴 ∥ 𝐵 ) |
11 |
8 10
|
eqbrtrrd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → 0 ∥ 𝐵 ) |
12 |
|
simplr2 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → 𝐵 ∈ ℤ ) |
13 |
|
0dvds |
⊢ ( 𝐵 ∈ ℤ → ( 0 ∥ 𝐵 ↔ 𝐵 = 0 ) ) |
14 |
12 13
|
syl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → ( 0 ∥ 𝐵 ↔ 𝐵 = 0 ) ) |
15 |
11 14
|
mpbid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → 𝐵 = 0 ) |
16 |
15
|
oveq2d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → ( 𝑃 pCnt 𝐵 ) = ( 𝑃 pCnt 0 ) ) |
17 |
7 9 16
|
3brtr4d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 = 0 ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
18 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
19 |
18
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → 𝑃 ∈ ℕ ) |
20 |
|
simpll |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → 𝑃 ∈ ℙ ) |
21 |
|
simplr1 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∈ ℤ ) |
22 |
|
simpr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → 𝐴 ≠ 0 ) |
23 |
|
pczcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) |
24 |
20 21 22 23
|
syl12anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) |
25 |
19 24
|
nnexpcld |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℕ ) |
26 |
25
|
nnzd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℤ ) |
27 |
|
simplr2 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → 𝐵 ∈ ℤ ) |
28 |
|
pczdvds |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ) |
29 |
20 21 22 28
|
syl12anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ) |
30 |
|
simplr3 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → 𝐴 ∥ 𝐵 ) |
31 |
26 21 27 29 30
|
dvdstrd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐵 ) |
32 |
|
pcdvdsb |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐵 ) ) |
33 |
20 27 24 32
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐵 ) ) |
34 |
31 33
|
mpbird |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) ∧ 𝐴 ≠ 0 ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
35 |
17 34
|
pm2.61dane |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∥ 𝐵 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |