Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
2 |
|
1nn0 |
⊢ 1 ∈ ℕ0 |
3 |
|
pcdvdsb |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ∧ 1 ∈ ℕ0 ) → ( 1 ≤ ( 𝑃 pCnt 𝑁 ) ↔ ( 𝑃 ↑ 1 ) ∥ 𝑁 ) ) |
4 |
2 3
|
mp3an3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 1 ≤ ( 𝑃 pCnt 𝑁 ) ↔ ( 𝑃 ↑ 1 ) ∥ 𝑁 ) ) |
5 |
1 4
|
sylan2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 1 ≤ ( 𝑃 pCnt 𝑁 ) ↔ ( 𝑃 ↑ 1 ) ∥ 𝑁 ) ) |
6 |
|
pccl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ) |
7 |
|
elnnnn0c |
⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ∧ 1 ≤ ( 𝑃 pCnt 𝑁 ) ) ) |
8 |
7
|
baibr |
⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 → ( 1 ≤ ( 𝑃 pCnt 𝑁 ) ↔ ( 𝑃 pCnt 𝑁 ) ∈ ℕ ) ) |
9 |
6 8
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 1 ≤ ( 𝑃 pCnt 𝑁 ) ↔ ( 𝑃 pCnt 𝑁 ) ∈ ℕ ) ) |
10 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
11 |
10
|
nncnd |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℂ ) |
12 |
11
|
exp1d |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 ↑ 1 ) = 𝑃 ) |
13 |
12
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ↑ 1 ) = 𝑃 ) |
14 |
13
|
breq1d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 ↑ 1 ) ∥ 𝑁 ↔ 𝑃 ∥ 𝑁 ) ) |
15 |
5 9 14
|
3bitr3d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ 𝑃 ∥ 𝑁 ) ) |