Step |
Hyp |
Ref |
Expression |
1 |
|
pcelnn |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ 𝑃 ∥ 𝑁 ) ) |
2 |
|
pccl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ) |
3 |
|
nnne0 |
⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ → ( 𝑃 pCnt 𝑁 ) ≠ 0 ) |
4 |
|
elnn0 |
⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ↔ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ∨ ( 𝑃 pCnt 𝑁 ) = 0 ) ) |
5 |
4
|
biimpi |
⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ∨ ( 𝑃 pCnt 𝑁 ) = 0 ) ) |
6 |
5
|
ord |
⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 → ( ¬ ( 𝑃 pCnt 𝑁 ) ∈ ℕ → ( 𝑃 pCnt 𝑁 ) = 0 ) ) |
7 |
6
|
necon1ad |
⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 → ( ( 𝑃 pCnt 𝑁 ) ≠ 0 → ( 𝑃 pCnt 𝑁 ) ∈ ℕ ) ) |
8 |
3 7
|
impbid2 |
⊢ ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ ( 𝑃 pCnt 𝑁 ) ≠ 0 ) ) |
9 |
2 8
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑁 ) ∈ ℕ ↔ ( 𝑃 pCnt 𝑁 ) ≠ 0 ) ) |
10 |
1 9
|
bitr3d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( 𝑃 ∥ 𝑁 ↔ ( 𝑃 pCnt 𝑁 ) ≠ 0 ) ) |
11 |
10
|
necon2bbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℕ ) → ( ( 𝑃 pCnt 𝑁 ) = 0 ↔ ¬ 𝑃 ∥ 𝑁 ) ) |