Step |
Hyp |
Ref |
Expression |
1 |
|
pcval.1 |
⊢ 𝑆 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) |
2 |
|
pcval.2 |
⊢ 𝑇 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) |
3 |
|
simprl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → 𝑁 ∈ ℚ ) |
4 |
|
elq |
⊢ ( 𝑁 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) ) |
5 |
3 4
|
sylib |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) ) |
6 |
|
ovex |
⊢ ( 𝑆 − 𝑇 ) ∈ V |
7 |
|
biidd |
⊢ ( 𝑧 = ( 𝑆 − 𝑇 ) → ( 𝑁 = ( 𝑥 / 𝑦 ) ↔ 𝑁 = ( 𝑥 / 𝑦 ) ) ) |
8 |
6 7
|
ceqsexv |
⊢ ( ∃ 𝑧 ( 𝑧 = ( 𝑆 − 𝑇 ) ∧ 𝑁 = ( 𝑥 / 𝑦 ) ) ↔ 𝑁 = ( 𝑥 / 𝑦 ) ) |
9 |
|
exancom |
⊢ ( ∃ 𝑧 ( 𝑧 = ( 𝑆 − 𝑇 ) ∧ 𝑁 = ( 𝑥 / 𝑦 ) ) ↔ ∃ 𝑧 ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
10 |
8 9
|
bitr3i |
⊢ ( 𝑁 = ( 𝑥 / 𝑦 ) ↔ ∃ 𝑧 ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
11 |
10
|
rexbii |
⊢ ( ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) ↔ ∃ 𝑦 ∈ ℕ ∃ 𝑧 ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
12 |
|
rexcom4 |
⊢ ( ∃ 𝑦 ∈ ℕ ∃ 𝑧 ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ↔ ∃ 𝑧 ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
13 |
11 12
|
bitri |
⊢ ( ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) ↔ ∃ 𝑧 ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
14 |
13
|
rexbii |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑧 ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
15 |
|
rexcom4 |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑧 ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ↔ ∃ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
16 |
14 15
|
bitri |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑁 = ( 𝑥 / 𝑦 ) ↔ ∃ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
17 |
5 16
|
sylib |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ∃ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |
18 |
|
eqid |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) |
19 |
|
eqid |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) |
20 |
|
simp11l |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑃 ∈ ℙ ) |
21 |
|
simp11r |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑁 ≠ 0 ) |
22 |
|
simp12 |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) |
23 |
|
simp13l |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑁 = ( 𝑥 / 𝑦 ) ) |
24 |
|
simp2 |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ) |
25 |
|
simp3l |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑁 = ( 𝑠 / 𝑡 ) ) |
26 |
1 2 18 19 20 21 22 23 24 25
|
pceulem |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → ( 𝑆 − 𝑇 ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) |
27 |
|
simp13r |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑧 = ( 𝑆 − 𝑇 ) ) |
28 |
|
simp3r |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) |
29 |
26 27 28
|
3eqtr4d |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑧 = 𝑤 ) |
30 |
29
|
3exp |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) → ( ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) → ( ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) → 𝑧 = 𝑤 ) ) ) |
31 |
30
|
rexlimdvv |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) → ( ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) → 𝑧 = 𝑤 ) ) |
32 |
31
|
3exp |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ≠ 0 ) → ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) → ( ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) → 𝑧 = 𝑤 ) ) ) ) |
33 |
32
|
adantrl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) → ( ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) → 𝑧 = 𝑤 ) ) ) ) |
34 |
33
|
rexlimdvv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) → ( ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) → 𝑧 = 𝑤 ) ) ) |
35 |
34
|
impd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ∧ ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑧 = 𝑤 ) ) |
36 |
35
|
alrimivv |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ∀ 𝑧 ∀ 𝑤 ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ∧ ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑧 = 𝑤 ) ) |
37 |
|
eqeq1 |
⊢ ( 𝑧 = 𝑤 → ( 𝑧 = ( 𝑆 − 𝑇 ) ↔ 𝑤 = ( 𝑆 − 𝑇 ) ) ) |
38 |
37
|
anbi2d |
⊢ ( 𝑧 = 𝑤 → ( ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ↔ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑤 = ( 𝑆 − 𝑇 ) ) ) ) |
39 |
38
|
2rexbidv |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑤 = ( 𝑆 − 𝑇 ) ) ) ) |
40 |
|
oveq1 |
⊢ ( 𝑥 = 𝑠 → ( 𝑥 / 𝑦 ) = ( 𝑠 / 𝑦 ) ) |
41 |
40
|
eqeq2d |
⊢ ( 𝑥 = 𝑠 → ( 𝑁 = ( 𝑥 / 𝑦 ) ↔ 𝑁 = ( 𝑠 / 𝑦 ) ) ) |
42 |
|
breq2 |
⊢ ( 𝑥 = 𝑠 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 ↔ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 ) ) |
43 |
42
|
rabbidv |
⊢ ( 𝑥 = 𝑠 → { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } ) |
44 |
43
|
supeq1d |
⊢ ( 𝑥 = 𝑠 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) ) |
45 |
1 44
|
eqtrid |
⊢ ( 𝑥 = 𝑠 → 𝑆 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) ) |
46 |
45
|
oveq1d |
⊢ ( 𝑥 = 𝑠 → ( 𝑆 − 𝑇 ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − 𝑇 ) ) |
47 |
46
|
eqeq2d |
⊢ ( 𝑥 = 𝑠 → ( 𝑤 = ( 𝑆 − 𝑇 ) ↔ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − 𝑇 ) ) ) |
48 |
41 47
|
anbi12d |
⊢ ( 𝑥 = 𝑠 → ( ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑤 = ( 𝑆 − 𝑇 ) ) ↔ ( 𝑁 = ( 𝑠 / 𝑦 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − 𝑇 ) ) ) ) |
49 |
48
|
rexbidv |
⊢ ( 𝑥 = 𝑠 → ( ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑤 = ( 𝑆 − 𝑇 ) ) ↔ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑦 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − 𝑇 ) ) ) ) |
50 |
|
oveq2 |
⊢ ( 𝑦 = 𝑡 → ( 𝑠 / 𝑦 ) = ( 𝑠 / 𝑡 ) ) |
51 |
50
|
eqeq2d |
⊢ ( 𝑦 = 𝑡 → ( 𝑁 = ( 𝑠 / 𝑦 ) ↔ 𝑁 = ( 𝑠 / 𝑡 ) ) ) |
52 |
|
breq2 |
⊢ ( 𝑦 = 𝑡 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 ↔ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 ) ) |
53 |
52
|
rabbidv |
⊢ ( 𝑦 = 𝑡 → { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } ) |
54 |
53
|
supeq1d |
⊢ ( 𝑦 = 𝑡 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) |
55 |
2 54
|
eqtrid |
⊢ ( 𝑦 = 𝑡 → 𝑇 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) |
56 |
55
|
oveq2d |
⊢ ( 𝑦 = 𝑡 → ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − 𝑇 ) = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) |
57 |
56
|
eqeq2d |
⊢ ( 𝑦 = 𝑡 → ( 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − 𝑇 ) ↔ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) |
58 |
51 57
|
anbi12d |
⊢ ( 𝑦 = 𝑡 → ( ( 𝑁 = ( 𝑠 / 𝑦 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − 𝑇 ) ) ↔ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) ) |
59 |
58
|
cbvrexvw |
⊢ ( ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑦 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − 𝑇 ) ) ↔ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) |
60 |
49 59
|
bitrdi |
⊢ ( 𝑥 = 𝑠 → ( ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑤 = ( 𝑆 − 𝑇 ) ) ↔ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) ) |
61 |
60
|
cbvrexvw |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑤 = ( 𝑆 − 𝑇 ) ) ↔ ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) |
62 |
39 61
|
bitrdi |
⊢ ( 𝑧 = 𝑤 → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ↔ ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) ) |
63 |
62
|
eu4 |
⊢ ( ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ↔ ( ∃ 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ∧ ∀ 𝑧 ∀ 𝑤 ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ∧ ∃ 𝑠 ∈ ℤ ∃ 𝑡 ∈ ℕ ( 𝑁 = ( 𝑠 / 𝑡 ) ∧ 𝑤 = ( sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) − sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) ) ) ) → 𝑧 = 𝑤 ) ) ) |
64 |
17 36 63
|
sylanbrc |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℚ ∧ 𝑁 ≠ 0 ) ) → ∃! 𝑧 ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ ( 𝑁 = ( 𝑥 / 𝑦 ) ∧ 𝑧 = ( 𝑆 − 𝑇 ) ) ) |