Step |
Hyp |
Ref |
Expression |
1 |
|
pcval.1 |
⊢ 𝑆 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } , ℝ , < ) |
2 |
|
pcval.2 |
⊢ 𝑇 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } , ℝ , < ) |
3 |
|
pceu.3 |
⊢ 𝑈 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } , ℝ , < ) |
4 |
|
pceu.4 |
⊢ 𝑉 = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } , ℝ , < ) |
5 |
|
pceu.5 |
⊢ ( 𝜑 → 𝑃 ∈ ℙ ) |
6 |
|
pceu.6 |
⊢ ( 𝜑 → 𝑁 ≠ 0 ) |
7 |
|
pceu.7 |
⊢ ( 𝜑 → ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) |
8 |
|
pceu.8 |
⊢ ( 𝜑 → 𝑁 = ( 𝑥 / 𝑦 ) ) |
9 |
|
pceu.9 |
⊢ ( 𝜑 → ( 𝑠 ∈ ℤ ∧ 𝑡 ∈ ℕ ) ) |
10 |
|
pceu.10 |
⊢ ( 𝜑 → 𝑁 = ( 𝑠 / 𝑡 ) ) |
11 |
7
|
simprd |
⊢ ( 𝜑 → 𝑦 ∈ ℕ ) |
12 |
11
|
nncnd |
⊢ ( 𝜑 → 𝑦 ∈ ℂ ) |
13 |
9
|
simpld |
⊢ ( 𝜑 → 𝑠 ∈ ℤ ) |
14 |
13
|
zcnd |
⊢ ( 𝜑 → 𝑠 ∈ ℂ ) |
15 |
12 14
|
mulcomd |
⊢ ( 𝜑 → ( 𝑦 · 𝑠 ) = ( 𝑠 · 𝑦 ) ) |
16 |
10 8
|
eqtr3d |
⊢ ( 𝜑 → ( 𝑠 / 𝑡 ) = ( 𝑥 / 𝑦 ) ) |
17 |
9
|
simprd |
⊢ ( 𝜑 → 𝑡 ∈ ℕ ) |
18 |
17
|
nncnd |
⊢ ( 𝜑 → 𝑡 ∈ ℂ ) |
19 |
7
|
simpld |
⊢ ( 𝜑 → 𝑥 ∈ ℤ ) |
20 |
19
|
zcnd |
⊢ ( 𝜑 → 𝑥 ∈ ℂ ) |
21 |
17
|
nnne0d |
⊢ ( 𝜑 → 𝑡 ≠ 0 ) |
22 |
11
|
nnne0d |
⊢ ( 𝜑 → 𝑦 ≠ 0 ) |
23 |
14 18 20 12 21 22
|
divmuleqd |
⊢ ( 𝜑 → ( ( 𝑠 / 𝑡 ) = ( 𝑥 / 𝑦 ) ↔ ( 𝑠 · 𝑦 ) = ( 𝑥 · 𝑡 ) ) ) |
24 |
16 23
|
mpbid |
⊢ ( 𝜑 → ( 𝑠 · 𝑦 ) = ( 𝑥 · 𝑡 ) ) |
25 |
15 24
|
eqtrd |
⊢ ( 𝜑 → ( 𝑦 · 𝑠 ) = ( 𝑥 · 𝑡 ) ) |
26 |
25
|
breq2d |
⊢ ( 𝜑 → ( ( 𝑃 ↑ 𝑧 ) ∥ ( 𝑦 · 𝑠 ) ↔ ( 𝑃 ↑ 𝑧 ) ∥ ( 𝑥 · 𝑡 ) ) ) |
27 |
26
|
rabbidv |
⊢ ( 𝜑 → { 𝑧 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑧 ) ∥ ( 𝑦 · 𝑠 ) } = { 𝑧 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑧 ) ∥ ( 𝑥 · 𝑡 ) } ) |
28 |
|
oveq2 |
⊢ ( 𝑛 = 𝑧 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 𝑧 ) ) |
29 |
28
|
breq1d |
⊢ ( 𝑛 = 𝑧 → ( ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑦 · 𝑠 ) ↔ ( 𝑃 ↑ 𝑧 ) ∥ ( 𝑦 · 𝑠 ) ) ) |
30 |
29
|
cbvrabv |
⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑦 · 𝑠 ) } = { 𝑧 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑧 ) ∥ ( 𝑦 · 𝑠 ) } |
31 |
28
|
breq1d |
⊢ ( 𝑛 = 𝑧 → ( ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑥 · 𝑡 ) ↔ ( 𝑃 ↑ 𝑧 ) ∥ ( 𝑥 · 𝑡 ) ) ) |
32 |
31
|
cbvrabv |
⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑥 · 𝑡 ) } = { 𝑧 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑧 ) ∥ ( 𝑥 · 𝑡 ) } |
33 |
27 30 32
|
3eqtr4g |
⊢ ( 𝜑 → { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑦 · 𝑠 ) } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑥 · 𝑡 ) } ) |
34 |
33
|
supeq1d |
⊢ ( 𝜑 → sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑦 · 𝑠 ) } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑥 · 𝑡 ) } , ℝ , < ) ) |
35 |
11
|
nnzd |
⊢ ( 𝜑 → 𝑦 ∈ ℤ ) |
36 |
18 21
|
div0d |
⊢ ( 𝜑 → ( 0 / 𝑡 ) = 0 ) |
37 |
|
oveq1 |
⊢ ( 𝑠 = 0 → ( 𝑠 / 𝑡 ) = ( 0 / 𝑡 ) ) |
38 |
37
|
eqeq1d |
⊢ ( 𝑠 = 0 → ( ( 𝑠 / 𝑡 ) = 0 ↔ ( 0 / 𝑡 ) = 0 ) ) |
39 |
36 38
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑠 = 0 → ( 𝑠 / 𝑡 ) = 0 ) ) |
40 |
10
|
eqeq1d |
⊢ ( 𝜑 → ( 𝑁 = 0 ↔ ( 𝑠 / 𝑡 ) = 0 ) ) |
41 |
39 40
|
sylibrd |
⊢ ( 𝜑 → ( 𝑠 = 0 → 𝑁 = 0 ) ) |
42 |
41
|
necon3d |
⊢ ( 𝜑 → ( 𝑁 ≠ 0 → 𝑠 ≠ 0 ) ) |
43 |
6 42
|
mpd |
⊢ ( 𝜑 → 𝑠 ≠ 0 ) |
44 |
|
eqid |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑦 · 𝑠 ) } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑦 · 𝑠 ) } , ℝ , < ) |
45 |
2 3 44
|
pcpremul |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑠 ≠ 0 ) ) → ( 𝑇 + 𝑈 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑦 · 𝑠 ) } , ℝ , < ) ) |
46 |
5 35 22 13 43 45
|
syl122anc |
⊢ ( 𝜑 → ( 𝑇 + 𝑈 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑦 · 𝑠 ) } , ℝ , < ) ) |
47 |
12 22
|
div0d |
⊢ ( 𝜑 → ( 0 / 𝑦 ) = 0 ) |
48 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = ( 0 / 𝑦 ) ) |
49 |
48
|
eqeq1d |
⊢ ( 𝑥 = 0 → ( ( 𝑥 / 𝑦 ) = 0 ↔ ( 0 / 𝑦 ) = 0 ) ) |
50 |
47 49
|
syl5ibrcom |
⊢ ( 𝜑 → ( 𝑥 = 0 → ( 𝑥 / 𝑦 ) = 0 ) ) |
51 |
8
|
eqeq1d |
⊢ ( 𝜑 → ( 𝑁 = 0 ↔ ( 𝑥 / 𝑦 ) = 0 ) ) |
52 |
50 51
|
sylibrd |
⊢ ( 𝜑 → ( 𝑥 = 0 → 𝑁 = 0 ) ) |
53 |
52
|
necon3d |
⊢ ( 𝜑 → ( 𝑁 ≠ 0 → 𝑥 ≠ 0 ) ) |
54 |
6 53
|
mpd |
⊢ ( 𝜑 → 𝑥 ≠ 0 ) |
55 |
17
|
nnzd |
⊢ ( 𝜑 → 𝑡 ∈ ℤ ) |
56 |
|
eqid |
⊢ sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑥 · 𝑡 ) } , ℝ , < ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑥 · 𝑡 ) } , ℝ , < ) |
57 |
1 4 56
|
pcpremul |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ∧ ( 𝑡 ∈ ℤ ∧ 𝑡 ≠ 0 ) ) → ( 𝑆 + 𝑉 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑥 · 𝑡 ) } , ℝ , < ) ) |
58 |
5 19 54 55 21 57
|
syl122anc |
⊢ ( 𝜑 → ( 𝑆 + 𝑉 ) = sup ( { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ ( 𝑥 · 𝑡 ) } , ℝ , < ) ) |
59 |
34 46 58
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑇 + 𝑈 ) = ( 𝑆 + 𝑉 ) ) |
60 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
61 |
5 60
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
62 |
|
eqid |
⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑦 } |
63 |
62 2
|
pcprecl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) ) → ( 𝑇 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑇 ) ∥ 𝑦 ) ) |
64 |
63
|
simpld |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑦 ∈ ℤ ∧ 𝑦 ≠ 0 ) ) → 𝑇 ∈ ℕ0 ) |
65 |
61 35 22 64
|
syl12anc |
⊢ ( 𝜑 → 𝑇 ∈ ℕ0 ) |
66 |
65
|
nn0cnd |
⊢ ( 𝜑 → 𝑇 ∈ ℂ ) |
67 |
|
eqid |
⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑠 } |
68 |
67 3
|
pcprecl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑠 ≠ 0 ) ) → ( 𝑈 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑈 ) ∥ 𝑠 ) ) |
69 |
68
|
simpld |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑠 ∈ ℤ ∧ 𝑠 ≠ 0 ) ) → 𝑈 ∈ ℕ0 ) |
70 |
61 13 43 69
|
syl12anc |
⊢ ( 𝜑 → 𝑈 ∈ ℕ0 ) |
71 |
70
|
nn0cnd |
⊢ ( 𝜑 → 𝑈 ∈ ℂ ) |
72 |
|
eqid |
⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑥 } |
73 |
72 1
|
pcprecl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → ( 𝑆 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑆 ) ∥ 𝑥 ) ) |
74 |
73
|
simpld |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑥 ≠ 0 ) ) → 𝑆 ∈ ℕ0 ) |
75 |
61 19 54 74
|
syl12anc |
⊢ ( 𝜑 → 𝑆 ∈ ℕ0 ) |
76 |
75
|
nn0cnd |
⊢ ( 𝜑 → 𝑆 ∈ ℂ ) |
77 |
|
eqid |
⊢ { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑡 } |
78 |
77 4
|
pcprecl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑡 ∈ ℤ ∧ 𝑡 ≠ 0 ) ) → ( 𝑉 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑉 ) ∥ 𝑡 ) ) |
79 |
78
|
simpld |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑡 ∈ ℤ ∧ 𝑡 ≠ 0 ) ) → 𝑉 ∈ ℕ0 ) |
80 |
61 55 21 79
|
syl12anc |
⊢ ( 𝜑 → 𝑉 ∈ ℕ0 ) |
81 |
80
|
nn0cnd |
⊢ ( 𝜑 → 𝑉 ∈ ℂ ) |
82 |
66 71 76 81
|
addsubeq4d |
⊢ ( 𝜑 → ( ( 𝑇 + 𝑈 ) = ( 𝑆 + 𝑉 ) ↔ ( 𝑆 − 𝑇 ) = ( 𝑈 − 𝑉 ) ) ) |
83 |
59 82
|
mpbid |
⊢ ( 𝜑 → ( 𝑆 − 𝑇 ) = ( 𝑈 − 𝑉 ) ) |