Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝑥 = 0 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 0 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑃 pCnt ( 𝐴 ↑ 0 ) ) ) |
3 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) = ( 0 · ( 𝑃 pCnt 𝐴 ) ) ) |
4 |
2 3
|
eqeq12d |
⊢ ( 𝑥 = 0 → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) ↔ ( 𝑃 pCnt ( 𝐴 ↑ 0 ) ) = ( 0 · ( 𝑃 pCnt 𝐴 ) ) ) ) |
5 |
|
oveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑦 ) ) |
6 |
5
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) ) |
7 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) = ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) |
8 |
6 7
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) ↔ ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) ) |
9 |
|
oveq2 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) |
10 |
9
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑃 pCnt ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) ) |
11 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) = ( ( 𝑦 + 1 ) · ( 𝑃 pCnt 𝐴 ) ) ) |
12 |
10 11
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) ↔ ( 𝑃 pCnt ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) = ( ( 𝑦 + 1 ) · ( 𝑃 pCnt 𝐴 ) ) ) ) |
13 |
|
oveq2 |
⊢ ( 𝑥 = - 𝑦 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ - 𝑦 ) ) |
14 |
13
|
oveq2d |
⊢ ( 𝑥 = - 𝑦 → ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑃 pCnt ( 𝐴 ↑ - 𝑦 ) ) ) |
15 |
|
oveq1 |
⊢ ( 𝑥 = - 𝑦 → ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) = ( - 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) |
16 |
14 15
|
eqeq12d |
⊢ ( 𝑥 = - 𝑦 → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) ↔ ( 𝑃 pCnt ( 𝐴 ↑ - 𝑦 ) ) = ( - 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) ) |
17 |
|
oveq2 |
⊢ ( 𝑥 = 𝑁 → ( 𝐴 ↑ 𝑥 ) = ( 𝐴 ↑ 𝑁 ) ) |
18 |
17
|
oveq2d |
⊢ ( 𝑥 = 𝑁 → ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑃 pCnt ( 𝐴 ↑ 𝑁 ) ) ) |
19 |
|
oveq1 |
⊢ ( 𝑥 = 𝑁 → ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) = ( 𝑁 · ( 𝑃 pCnt 𝐴 ) ) ) |
20 |
18 19
|
eqeq12d |
⊢ ( 𝑥 = 𝑁 → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑥 ) ) = ( 𝑥 · ( 𝑃 pCnt 𝐴 ) ) ↔ ( 𝑃 pCnt ( 𝐴 ↑ 𝑁 ) ) = ( 𝑁 · ( 𝑃 pCnt 𝐴 ) ) ) ) |
21 |
|
pc1 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 1 ) = 0 ) |
22 |
21
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 1 ) = 0 ) |
23 |
|
qcn |
⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℂ ) |
24 |
23
|
ad2antrl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → 𝐴 ∈ ℂ ) |
25 |
24
|
exp0d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝐴 ↑ 0 ) = 1 ) |
26 |
25
|
oveq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 ↑ 0 ) ) = ( 𝑃 pCnt 1 ) ) |
27 |
|
pcqcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℤ ) |
28 |
27
|
zcnd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℂ ) |
29 |
28
|
mul02d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 0 · ( 𝑃 pCnt 𝐴 ) ) = 0 ) |
30 |
22 26 29
|
3eqtr4d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 ↑ 0 ) ) = ( 0 · ( 𝑃 pCnt 𝐴 ) ) ) |
31 |
|
oveq1 |
⊢ ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) + ( 𝑃 pCnt 𝐴 ) ) = ( ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) + ( 𝑃 pCnt 𝐴 ) ) ) |
32 |
|
expp1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑦 + 1 ) ) = ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) |
33 |
24 32
|
sylan |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 ↑ ( 𝑦 + 1 ) ) = ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) |
34 |
33
|
oveq2d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) = ( 𝑃 pCnt ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) ) |
35 |
|
simpll |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → 𝑃 ∈ ℙ ) |
36 |
|
simplrl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → 𝐴 ∈ ℚ ) |
37 |
|
simplrr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → 𝐴 ≠ 0 ) |
38 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
39 |
38
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℤ ) |
40 |
|
qexpclz |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑦 ∈ ℤ ) → ( 𝐴 ↑ 𝑦 ) ∈ ℚ ) |
41 |
36 37 39 40
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑦 ) ∈ ℚ ) |
42 |
24
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) |
43 |
42 37 39
|
expne0d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑦 ) ≠ 0 ) |
44 |
|
pcqmul |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 ↑ 𝑦 ) ∈ ℚ ∧ ( 𝐴 ↑ 𝑦 ) ≠ 0 ) ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) = ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) + ( 𝑃 pCnt 𝐴 ) ) ) |
45 |
35 41 43 36 37 44
|
syl122anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 pCnt ( ( 𝐴 ↑ 𝑦 ) · 𝐴 ) ) = ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) + ( 𝑃 pCnt 𝐴 ) ) ) |
46 |
34 45
|
eqtrd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) = ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) + ( 𝑃 pCnt 𝐴 ) ) ) |
47 |
|
nn0cn |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℂ ) |
48 |
47
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → 𝑦 ∈ ℂ ) |
49 |
28
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( 𝑃 pCnt 𝐴 ) ∈ ℂ ) |
50 |
48 49
|
adddirp1d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑦 + 1 ) · ( 𝑃 pCnt 𝐴 ) ) = ( ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) + ( 𝑃 pCnt 𝐴 ) ) ) |
51 |
46 50
|
eqeq12d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) = ( ( 𝑦 + 1 ) · ( 𝑃 pCnt 𝐴 ) ) ↔ ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) + ( 𝑃 pCnt 𝐴 ) ) = ( ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) + ( 𝑃 pCnt 𝐴 ) ) ) ) |
52 |
31 51
|
syl5ibr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) → ( 𝑃 pCnt ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) = ( ( 𝑦 + 1 ) · ( 𝑃 pCnt 𝐴 ) ) ) ) |
53 |
52
|
ex |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑦 ∈ ℕ0 → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) → ( 𝑃 pCnt ( 𝐴 ↑ ( 𝑦 + 1 ) ) ) = ( ( 𝑦 + 1 ) · ( 𝑃 pCnt 𝐴 ) ) ) ) ) |
54 |
|
negeq |
⊢ ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) → - ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = - ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) |
55 |
|
nnnn0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℕ0 ) |
56 |
|
expneg |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( 𝐴 ↑ - 𝑦 ) = ( 1 / ( 𝐴 ↑ 𝑦 ) ) ) |
57 |
24 55 56
|
syl2an |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝐴 ↑ - 𝑦 ) = ( 1 / ( 𝐴 ↑ 𝑦 ) ) ) |
58 |
57
|
oveq2d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 𝐴 ↑ - 𝑦 ) ) = ( 𝑃 pCnt ( 1 / ( 𝐴 ↑ 𝑦 ) ) ) ) |
59 |
|
simpll |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → 𝑃 ∈ ℙ ) |
60 |
55 41
|
sylan2 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝐴 ↑ 𝑦 ) ∈ ℚ ) |
61 |
55 43
|
sylan2 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝐴 ↑ 𝑦 ) ≠ 0 ) |
62 |
|
pcrec |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 ↑ 𝑦 ) ∈ ℚ ∧ ( 𝐴 ↑ 𝑦 ) ≠ 0 ) ) → ( 𝑃 pCnt ( 1 / ( 𝐴 ↑ 𝑦 ) ) ) = - ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) ) |
63 |
59 60 61 62
|
syl12anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 1 / ( 𝐴 ↑ 𝑦 ) ) ) = - ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) ) |
64 |
58 63
|
eqtrd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( 𝑃 pCnt ( 𝐴 ↑ - 𝑦 ) ) = - ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) ) |
65 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
66 |
|
mulneg1 |
⊢ ( ( 𝑦 ∈ ℂ ∧ ( 𝑃 pCnt 𝐴 ) ∈ ℂ ) → ( - 𝑦 · ( 𝑃 pCnt 𝐴 ) ) = - ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) |
67 |
65 28 66
|
syl2anr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( - 𝑦 · ( 𝑃 pCnt 𝐴 ) ) = - ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) |
68 |
64 67
|
eqeq12d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑃 pCnt ( 𝐴 ↑ - 𝑦 ) ) = ( - 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ↔ - ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = - ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) ) |
69 |
54 68
|
syl5ibr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) ∧ 𝑦 ∈ ℕ ) → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) → ( 𝑃 pCnt ( 𝐴 ↑ - 𝑦 ) ) = ( - 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) ) |
70 |
69
|
ex |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑦 ∈ ℕ → ( ( 𝑃 pCnt ( 𝐴 ↑ 𝑦 ) ) = ( 𝑦 · ( 𝑃 pCnt 𝐴 ) ) → ( 𝑃 pCnt ( 𝐴 ↑ - 𝑦 ) ) = ( - 𝑦 · ( 𝑃 pCnt 𝐴 ) ) ) ) ) |
71 |
4 8 12 16 20 30 53 70
|
zindd |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ) → ( 𝑁 ∈ ℤ → ( 𝑃 pCnt ( 𝐴 ↑ 𝑁 ) ) = ( 𝑁 · ( 𝑃 pCnt 𝐴 ) ) ) ) |
72 |
71
|
3impia |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ) ∧ 𝑁 ∈ ℤ ) → ( 𝑃 pCnt ( 𝐴 ↑ 𝑁 ) ) = ( 𝑁 · ( 𝑃 pCnt 𝐴 ) ) ) |