| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq2 | ⊢ ( 𝑥  =  0  →  ( 𝐴 ↑ 𝑥 )  =  ( 𝐴 ↑ 0 ) ) | 
						
							| 2 | 1 | oveq2d | ⊢ ( 𝑥  =  0  →  ( 𝑃  pCnt  ( 𝐴 ↑ 𝑥 ) )  =  ( 𝑃  pCnt  ( 𝐴 ↑ 0 ) ) ) | 
						
							| 3 |  | oveq1 | ⊢ ( 𝑥  =  0  →  ( 𝑥  ·  ( 𝑃  pCnt  𝐴 ) )  =  ( 0  ·  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 4 | 2 3 | eqeq12d | ⊢ ( 𝑥  =  0  →  ( ( 𝑃  pCnt  ( 𝐴 ↑ 𝑥 ) )  =  ( 𝑥  ·  ( 𝑃  pCnt  𝐴 ) )  ↔  ( 𝑃  pCnt  ( 𝐴 ↑ 0 ) )  =  ( 0  ·  ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 5 |  | oveq2 | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴 ↑ 𝑥 )  =  ( 𝐴 ↑ 𝑦 ) ) | 
						
							| 6 | 5 | oveq2d | ⊢ ( 𝑥  =  𝑦  →  ( 𝑃  pCnt  ( 𝐴 ↑ 𝑥 ) )  =  ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) ) ) | 
						
							| 7 |  | oveq1 | ⊢ ( 𝑥  =  𝑦  →  ( 𝑥  ·  ( 𝑃  pCnt  𝐴 ) )  =  ( 𝑦  ·  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 8 | 6 7 | eqeq12d | ⊢ ( 𝑥  =  𝑦  →  ( ( 𝑃  pCnt  ( 𝐴 ↑ 𝑥 ) )  =  ( 𝑥  ·  ( 𝑃  pCnt  𝐴 ) )  ↔  ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) )  =  ( 𝑦  ·  ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 9 |  | oveq2 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝐴 ↑ 𝑥 )  =  ( 𝐴 ↑ ( 𝑦  +  1 ) ) ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝑃  pCnt  ( 𝐴 ↑ 𝑥 ) )  =  ( 𝑃  pCnt  ( 𝐴 ↑ ( 𝑦  +  1 ) ) ) ) | 
						
							| 11 |  | oveq1 | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( 𝑥  ·  ( 𝑃  pCnt  𝐴 ) )  =  ( ( 𝑦  +  1 )  ·  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 12 | 10 11 | eqeq12d | ⊢ ( 𝑥  =  ( 𝑦  +  1 )  →  ( ( 𝑃  pCnt  ( 𝐴 ↑ 𝑥 ) )  =  ( 𝑥  ·  ( 𝑃  pCnt  𝐴 ) )  ↔  ( 𝑃  pCnt  ( 𝐴 ↑ ( 𝑦  +  1 ) ) )  =  ( ( 𝑦  +  1 )  ·  ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑥  =  - 𝑦  →  ( 𝐴 ↑ 𝑥 )  =  ( 𝐴 ↑ - 𝑦 ) ) | 
						
							| 14 | 13 | oveq2d | ⊢ ( 𝑥  =  - 𝑦  →  ( 𝑃  pCnt  ( 𝐴 ↑ 𝑥 ) )  =  ( 𝑃  pCnt  ( 𝐴 ↑ - 𝑦 ) ) ) | 
						
							| 15 |  | oveq1 | ⊢ ( 𝑥  =  - 𝑦  →  ( 𝑥  ·  ( 𝑃  pCnt  𝐴 ) )  =  ( - 𝑦  ·  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 16 | 14 15 | eqeq12d | ⊢ ( 𝑥  =  - 𝑦  →  ( ( 𝑃  pCnt  ( 𝐴 ↑ 𝑥 ) )  =  ( 𝑥  ·  ( 𝑃  pCnt  𝐴 ) )  ↔  ( 𝑃  pCnt  ( 𝐴 ↑ - 𝑦 ) )  =  ( - 𝑦  ·  ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 17 |  | oveq2 | ⊢ ( 𝑥  =  𝑁  →  ( 𝐴 ↑ 𝑥 )  =  ( 𝐴 ↑ 𝑁 ) ) | 
						
							| 18 | 17 | oveq2d | ⊢ ( 𝑥  =  𝑁  →  ( 𝑃  pCnt  ( 𝐴 ↑ 𝑥 ) )  =  ( 𝑃  pCnt  ( 𝐴 ↑ 𝑁 ) ) ) | 
						
							| 19 |  | oveq1 | ⊢ ( 𝑥  =  𝑁  →  ( 𝑥  ·  ( 𝑃  pCnt  𝐴 ) )  =  ( 𝑁  ·  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 20 | 18 19 | eqeq12d | ⊢ ( 𝑥  =  𝑁  →  ( ( 𝑃  pCnt  ( 𝐴 ↑ 𝑥 ) )  =  ( 𝑥  ·  ( 𝑃  pCnt  𝐴 ) )  ↔  ( 𝑃  pCnt  ( 𝐴 ↑ 𝑁 ) )  =  ( 𝑁  ·  ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 21 |  | pc1 | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  pCnt  1 )  =  0 ) | 
						
							| 22 | 21 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  →  ( 𝑃  pCnt  1 )  =  0 ) | 
						
							| 23 |  | qcn | ⊢ ( 𝐴  ∈  ℚ  →  𝐴  ∈  ℂ ) | 
						
							| 24 | 23 | ad2antrl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  →  𝐴  ∈  ℂ ) | 
						
							| 25 | 24 | exp0d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  →  ( 𝐴 ↑ 0 )  =  1 ) | 
						
							| 26 | 25 | oveq2d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  →  ( 𝑃  pCnt  ( 𝐴 ↑ 0 ) )  =  ( 𝑃  pCnt  1 ) ) | 
						
							| 27 |  | pcqcl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  →  ( 𝑃  pCnt  𝐴 )  ∈  ℤ ) | 
						
							| 28 | 27 | zcnd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  →  ( 𝑃  pCnt  𝐴 )  ∈  ℂ ) | 
						
							| 29 | 28 | mul02d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  →  ( 0  ·  ( 𝑃  pCnt  𝐴 ) )  =  0 ) | 
						
							| 30 | 22 26 29 | 3eqtr4d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  →  ( 𝑃  pCnt  ( 𝐴 ↑ 0 ) )  =  ( 0  ·  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 31 |  | oveq1 | ⊢ ( ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) )  =  ( 𝑦  ·  ( 𝑃  pCnt  𝐴 ) )  →  ( ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) )  +  ( 𝑃  pCnt  𝐴 ) )  =  ( ( 𝑦  ·  ( 𝑃  pCnt  𝐴 ) )  +  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 32 |  | expp1 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑦  ∈  ℕ0 )  →  ( 𝐴 ↑ ( 𝑦  +  1 ) )  =  ( ( 𝐴 ↑ 𝑦 )  ·  𝐴 ) ) | 
						
							| 33 | 24 32 | sylan | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  ( 𝐴 ↑ ( 𝑦  +  1 ) )  =  ( ( 𝐴 ↑ 𝑦 )  ·  𝐴 ) ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑃  pCnt  ( 𝐴 ↑ ( 𝑦  +  1 ) ) )  =  ( 𝑃  pCnt  ( ( 𝐴 ↑ 𝑦 )  ·  𝐴 ) ) ) | 
						
							| 35 |  | simpll | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  𝑃  ∈  ℙ ) | 
						
							| 36 |  | simplrl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  𝐴  ∈  ℚ ) | 
						
							| 37 |  | simplrr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  𝐴  ≠  0 ) | 
						
							| 38 |  | nn0z | ⊢ ( 𝑦  ∈  ℕ0  →  𝑦  ∈  ℤ ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  𝑦  ∈  ℤ ) | 
						
							| 40 |  | qexpclz | ⊢ ( ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0  ∧  𝑦  ∈  ℤ )  →  ( 𝐴 ↑ 𝑦 )  ∈  ℚ ) | 
						
							| 41 | 36 37 39 40 | syl3anc | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑦 )  ∈  ℚ ) | 
						
							| 42 | 24 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  𝐴  ∈  ℂ ) | 
						
							| 43 | 42 37 39 | expne0d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  ( 𝐴 ↑ 𝑦 )  ≠  0 ) | 
						
							| 44 |  | pcqmul | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ( 𝐴 ↑ 𝑦 )  ∈  ℚ  ∧  ( 𝐴 ↑ 𝑦 )  ≠  0 )  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  →  ( 𝑃  pCnt  ( ( 𝐴 ↑ 𝑦 )  ·  𝐴 ) )  =  ( ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) )  +  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 45 | 35 41 43 36 37 44 | syl122anc | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑃  pCnt  ( ( 𝐴 ↑ 𝑦 )  ·  𝐴 ) )  =  ( ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) )  +  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 46 | 34 45 | eqtrd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑃  pCnt  ( 𝐴 ↑ ( 𝑦  +  1 ) ) )  =  ( ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) )  +  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 47 |  | nn0cn | ⊢ ( 𝑦  ∈  ℕ0  →  𝑦  ∈  ℂ ) | 
						
							| 48 | 47 | adantl | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  𝑦  ∈  ℂ ) | 
						
							| 49 | 28 | adantr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  ( 𝑃  pCnt  𝐴 )  ∈  ℂ ) | 
						
							| 50 | 48 49 | adddirp1d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝑦  +  1 )  ·  ( 𝑃  pCnt  𝐴 ) )  =  ( ( 𝑦  ·  ( 𝑃  pCnt  𝐴 ) )  +  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 51 | 46 50 | eqeq12d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝑃  pCnt  ( 𝐴 ↑ ( 𝑦  +  1 ) ) )  =  ( ( 𝑦  +  1 )  ·  ( 𝑃  pCnt  𝐴 ) )  ↔  ( ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) )  +  ( 𝑃  pCnt  𝐴 ) )  =  ( ( 𝑦  ·  ( 𝑃  pCnt  𝐴 ) )  +  ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 52 | 31 51 | imbitrrid | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ0 )  →  ( ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) )  =  ( 𝑦  ·  ( 𝑃  pCnt  𝐴 ) )  →  ( 𝑃  pCnt  ( 𝐴 ↑ ( 𝑦  +  1 ) ) )  =  ( ( 𝑦  +  1 )  ·  ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 53 | 52 | ex | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  →  ( 𝑦  ∈  ℕ0  →  ( ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) )  =  ( 𝑦  ·  ( 𝑃  pCnt  𝐴 ) )  →  ( 𝑃  pCnt  ( 𝐴 ↑ ( 𝑦  +  1 ) ) )  =  ( ( 𝑦  +  1 )  ·  ( 𝑃  pCnt  𝐴 ) ) ) ) ) | 
						
							| 54 |  | negeq | ⊢ ( ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) )  =  ( 𝑦  ·  ( 𝑃  pCnt  𝐴 ) )  →  - ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) )  =  - ( 𝑦  ·  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 55 |  | nnnn0 | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℕ0 ) | 
						
							| 56 |  | expneg | ⊢ ( ( 𝐴  ∈  ℂ  ∧  𝑦  ∈  ℕ0 )  →  ( 𝐴 ↑ - 𝑦 )  =  ( 1  /  ( 𝐴 ↑ 𝑦 ) ) ) | 
						
							| 57 | 24 55 56 | syl2an | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝐴 ↑ - 𝑦 )  =  ( 1  /  ( 𝐴 ↑ 𝑦 ) ) ) | 
						
							| 58 | 57 | oveq2d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑃  pCnt  ( 𝐴 ↑ - 𝑦 ) )  =  ( 𝑃  pCnt  ( 1  /  ( 𝐴 ↑ 𝑦 ) ) ) ) | 
						
							| 59 |  | simpll | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ )  →  𝑃  ∈  ℙ ) | 
						
							| 60 | 55 41 | sylan2 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝐴 ↑ 𝑦 )  ∈  ℚ ) | 
						
							| 61 | 55 43 | sylan2 | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝐴 ↑ 𝑦 )  ≠  0 ) | 
						
							| 62 |  | pcrec | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( ( 𝐴 ↑ 𝑦 )  ∈  ℚ  ∧  ( 𝐴 ↑ 𝑦 )  ≠  0 ) )  →  ( 𝑃  pCnt  ( 1  /  ( 𝐴 ↑ 𝑦 ) ) )  =  - ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) ) ) | 
						
							| 63 | 59 60 61 62 | syl12anc | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑃  pCnt  ( 1  /  ( 𝐴 ↑ 𝑦 ) ) )  =  - ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) ) ) | 
						
							| 64 | 58 63 | eqtrd | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ )  →  ( 𝑃  pCnt  ( 𝐴 ↑ - 𝑦 ) )  =  - ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) ) ) | 
						
							| 65 |  | nncn | ⊢ ( 𝑦  ∈  ℕ  →  𝑦  ∈  ℂ ) | 
						
							| 66 |  | mulneg1 | ⊢ ( ( 𝑦  ∈  ℂ  ∧  ( 𝑃  pCnt  𝐴 )  ∈  ℂ )  →  ( - 𝑦  ·  ( 𝑃  pCnt  𝐴 ) )  =  - ( 𝑦  ·  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 67 | 65 28 66 | syl2anr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ )  →  ( - 𝑦  ·  ( 𝑃  pCnt  𝐴 ) )  =  - ( 𝑦  ·  ( 𝑃  pCnt  𝐴 ) ) ) | 
						
							| 68 | 64 67 | eqeq12d | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑃  pCnt  ( 𝐴 ↑ - 𝑦 ) )  =  ( - 𝑦  ·  ( 𝑃  pCnt  𝐴 ) )  ↔  - ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) )  =  - ( 𝑦  ·  ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 69 | 54 68 | imbitrrid | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  ∧  𝑦  ∈  ℕ )  →  ( ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) )  =  ( 𝑦  ·  ( 𝑃  pCnt  𝐴 ) )  →  ( 𝑃  pCnt  ( 𝐴 ↑ - 𝑦 ) )  =  ( - 𝑦  ·  ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 70 | 69 | ex | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  →  ( 𝑦  ∈  ℕ  →  ( ( 𝑃  pCnt  ( 𝐴 ↑ 𝑦 ) )  =  ( 𝑦  ·  ( 𝑃  pCnt  𝐴 ) )  →  ( 𝑃  pCnt  ( 𝐴 ↑ - 𝑦 ) )  =  ( - 𝑦  ·  ( 𝑃  pCnt  𝐴 ) ) ) ) ) | 
						
							| 71 | 4 8 12 16 20 30 53 70 | zindd | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 ) )  →  ( 𝑁  ∈  ℤ  →  ( 𝑃  pCnt  ( 𝐴 ↑ 𝑁 ) )  =  ( 𝑁  ·  ( 𝑃  pCnt  𝐴 ) ) ) ) | 
						
							| 72 | 71 | 3impia | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝐴  ∈  ℚ  ∧  𝐴  ≠  0 )  ∧  𝑁  ∈  ℤ )  →  ( 𝑃  pCnt  ( 𝐴 ↑ 𝑁 ) )  =  ( 𝑁  ·  ( 𝑃  pCnt  𝐴 ) ) ) |