Step |
Hyp |
Ref |
Expression |
1 |
|
nn0ge0 |
⊢ ( 𝑁 ∈ ℕ0 → 0 ≤ 𝑁 ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 0 ≤ 𝑁 ) |
3 |
|
nn0re |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) |
4 |
3
|
3ad2ant1 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑁 ∈ ℝ ) |
5 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
6 |
5
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ℕ ) |
7 |
|
eluznn0 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ℕ0 ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑀 ∈ ℕ0 ) |
9 |
6 8
|
nnexpcld |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ↑ 𝑀 ) ∈ ℕ ) |
10 |
9
|
nnred |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ↑ 𝑀 ) ∈ ℝ ) |
11 |
9
|
nngt0d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 0 < ( 𝑃 ↑ 𝑀 ) ) |
12 |
|
ge0div |
⊢ ( ( 𝑁 ∈ ℝ ∧ ( 𝑃 ↑ 𝑀 ) ∈ ℝ ∧ 0 < ( 𝑃 ↑ 𝑀 ) ) → ( 0 ≤ 𝑁 ↔ 0 ≤ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ) ) |
13 |
4 10 11 12
|
syl3anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( 0 ≤ 𝑁 ↔ 0 ≤ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ) ) |
14 |
2 13
|
mpbid |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 0 ≤ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ) |
15 |
8
|
nn0red |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑀 ∈ ℝ ) |
16 |
|
eluzle |
⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ 𝑀 ) |
17 |
16
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑁 ≤ 𝑀 ) |
18 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
19 |
18
|
3ad2ant3 |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
20 |
|
bernneq3 |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑀 ∈ ℕ0 ) → 𝑀 < ( 𝑃 ↑ 𝑀 ) ) |
21 |
19 8 20
|
syl2anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑀 < ( 𝑃 ↑ 𝑀 ) ) |
22 |
4 15 10 17 21
|
lelttrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑁 < ( 𝑃 ↑ 𝑀 ) ) |
23 |
9
|
nncnd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑃 ↑ 𝑀 ) ∈ ℂ ) |
24 |
23
|
mulid1d |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( ( 𝑃 ↑ 𝑀 ) · 1 ) = ( 𝑃 ↑ 𝑀 ) ) |
25 |
22 24
|
breqtrrd |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 𝑁 < ( ( 𝑃 ↑ 𝑀 ) · 1 ) ) |
26 |
|
1red |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → 1 ∈ ℝ ) |
27 |
|
ltdivmul |
⊢ ( ( 𝑁 ∈ ℝ ∧ 1 ∈ ℝ ∧ ( ( 𝑃 ↑ 𝑀 ) ∈ ℝ ∧ 0 < ( 𝑃 ↑ 𝑀 ) ) ) → ( ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) < 1 ↔ 𝑁 < ( ( 𝑃 ↑ 𝑀 ) · 1 ) ) ) |
28 |
4 26 10 11 27
|
syl112anc |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) < 1 ↔ 𝑁 < ( ( 𝑃 ↑ 𝑀 ) · 1 ) ) ) |
29 |
25 28
|
mpbird |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) < 1 ) |
30 |
|
0p1e1 |
⊢ ( 0 + 1 ) = 1 |
31 |
29 30
|
breqtrrdi |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) < ( 0 + 1 ) ) |
32 |
4 9
|
nndivred |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ∈ ℝ ) |
33 |
|
0z |
⊢ 0 ∈ ℤ |
34 |
|
flbi |
⊢ ( ( ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ∈ ℝ ∧ 0 ∈ ℤ ) → ( ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ) = 0 ↔ ( 0 ≤ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ∧ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) < ( 0 + 1 ) ) ) ) |
35 |
32 33 34
|
sylancl |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ) = 0 ↔ ( 0 ≤ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ∧ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) < ( 0 + 1 ) ) ) ) |
36 |
14 31 35
|
mpbir2and |
⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ∧ 𝑃 ∈ ℙ ) → ( ⌊ ‘ ( 𝑁 / ( 𝑃 ↑ 𝑀 ) ) ) = 0 ) |