Step |
Hyp |
Ref |
Expression |
1 |
|
pcgcd1 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
2 |
|
iftrue |
⊢ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) → if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
3 |
2
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
4 |
1 3
|
eqtr4d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) ) |
5 |
|
gcdcom |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) |
6 |
5
|
3adant1 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) |
7 |
6
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝐴 gcd 𝐵 ) = ( 𝐵 gcd 𝐴 ) ) |
8 |
7
|
oveq2d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt ( 𝐵 gcd 𝐴 ) ) ) |
9 |
|
iffalse |
⊢ ( ¬ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) → if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) = ( 𝑃 pCnt 𝐵 ) ) |
10 |
9
|
adantl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) = ( 𝑃 pCnt 𝐵 ) ) |
11 |
|
zq |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ ) |
12 |
|
pcxcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) |
13 |
11 12
|
sylan2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) |
14 |
13
|
3adant3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) |
15 |
|
zq |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℚ ) |
16 |
|
pcxcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℚ ) → ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) |
17 |
15 16
|
sylan2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ) → ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) |
18 |
|
xrletri |
⊢ ( ( ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ∧ ( 𝑃 pCnt 𝐵 ) ∈ ℝ* ) → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∨ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) ) |
19 |
14 17 18
|
3imp3i2an |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∨ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) ) |
20 |
19
|
orcanai |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
21 |
|
3ancomb |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ↔ ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ) |
22 |
|
pcgcd1 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) → ( 𝑃 pCnt ( 𝐵 gcd 𝐴 ) ) = ( 𝑃 pCnt 𝐵 ) ) |
23 |
21 22
|
sylanb |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐵 ) ≤ ( 𝑃 pCnt 𝐴 ) ) → ( 𝑃 pCnt ( 𝐵 gcd 𝐴 ) ) = ( 𝑃 pCnt 𝐵 ) ) |
24 |
20 23
|
syldan |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt ( 𝐵 gcd 𝐴 ) ) = ( 𝑃 pCnt 𝐵 ) ) |
25 |
10 24
|
eqtr4d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) = ( 𝑃 pCnt ( 𝐵 gcd 𝐴 ) ) ) |
26 |
8 25
|
eqtr4d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) ) |
27 |
4 26
|
pm2.61dan |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = if ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) , ( 𝑃 pCnt 𝐴 ) , ( 𝑃 pCnt 𝐵 ) ) ) |