Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( 𝐵 = 0 → ( 𝐴 gcd 𝐵 ) = ( 𝐴 gcd 0 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝐵 = 0 → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt ( 𝐴 gcd 0 ) ) ) |
3 |
2
|
eqeq1d |
⊢ ( 𝐵 = 0 → ( ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ↔ ( 𝑃 pCnt ( 𝐴 gcd 0 ) ) = ( 𝑃 pCnt 𝐴 ) ) ) |
4 |
|
simpl1 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → 𝑃 ∈ ℙ ) |
5 |
|
simp2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → 𝐴 ∈ ℤ ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℤ ) |
7 |
|
simpl3 |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → 𝐵 ∈ ℤ ) |
8 |
|
simprr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → 𝐵 ≠ 0 ) |
9 |
|
simpr |
⊢ ( ( 𝐴 = 0 ∧ 𝐵 = 0 ) → 𝐵 = 0 ) |
10 |
9
|
necon3ai |
⊢ ( 𝐵 ≠ 0 → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
11 |
8 10
|
syl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) |
12 |
|
gcdn0cl |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ¬ ( 𝐴 = 0 ∧ 𝐵 = 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
13 |
6 7 11 12
|
syl21anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
14 |
13
|
nnzd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
15 |
|
gcddvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
16 |
6 7 15
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
17 |
16
|
simpld |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
18 |
|
pcdvdstr |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
19 |
4 14 6 17 18
|
syl13anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ≤ ( 𝑃 pCnt 𝐴 ) ) |
20 |
|
zq |
⊢ ( 𝐴 ∈ ℤ → 𝐴 ∈ ℚ ) |
21 |
6 20
|
syl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → 𝐴 ∈ ℚ ) |
22 |
|
pcxcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) |
23 |
4 21 22
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ) |
24 |
|
pczcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐵 ∈ ℤ ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℕ0 ) |
25 |
4 7 8 24
|
syl12anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℕ0 ) |
26 |
25
|
nn0red |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐵 ) ∈ ℝ ) |
27 |
|
pcge0 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → 0 ≤ ( 𝑃 pCnt 𝐴 ) ) |
28 |
4 6 27
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → 0 ≤ ( 𝑃 pCnt 𝐴 ) ) |
29 |
|
ge0gtmnf |
⊢ ( ( ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ∧ 0 ≤ ( 𝑃 pCnt 𝐴 ) ) → -∞ < ( 𝑃 pCnt 𝐴 ) ) |
30 |
23 28 29
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → -∞ < ( 𝑃 pCnt 𝐴 ) ) |
31 |
|
simprl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) |
32 |
|
xrre |
⊢ ( ( ( ( 𝑃 pCnt 𝐴 ) ∈ ℝ* ∧ ( 𝑃 pCnt 𝐵 ) ∈ ℝ ) ∧ ( -∞ < ( 𝑃 pCnt 𝐴 ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ ) |
33 |
23 26 30 31 32
|
syl22anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℝ ) |
34 |
|
pnfnre |
⊢ +∞ ∉ ℝ |
35 |
34
|
neli |
⊢ ¬ +∞ ∈ ℝ |
36 |
|
pc0 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) = +∞ ) |
37 |
4 36
|
syl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 0 ) = +∞ ) |
38 |
37
|
eleq1d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑃 pCnt 0 ) ∈ ℝ ↔ +∞ ∈ ℝ ) ) |
39 |
35 38
|
mtbiri |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ¬ ( 𝑃 pCnt 0 ) ∈ ℝ ) |
40 |
|
oveq2 |
⊢ ( 𝐴 = 0 → ( 𝑃 pCnt 𝐴 ) = ( 𝑃 pCnt 0 ) ) |
41 |
40
|
eleq1d |
⊢ ( 𝐴 = 0 → ( ( 𝑃 pCnt 𝐴 ) ∈ ℝ ↔ ( 𝑃 pCnt 0 ) ∈ ℝ ) ) |
42 |
41
|
notbid |
⊢ ( 𝐴 = 0 → ( ¬ ( 𝑃 pCnt 𝐴 ) ∈ ℝ ↔ ¬ ( 𝑃 pCnt 0 ) ∈ ℝ ) ) |
43 |
39 42
|
syl5ibrcom |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 = 0 → ¬ ( 𝑃 pCnt 𝐴 ) ∈ ℝ ) ) |
44 |
43
|
necon2ad |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑃 pCnt 𝐴 ) ∈ ℝ → 𝐴 ≠ 0 ) ) |
45 |
33 44
|
mpd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → 𝐴 ≠ 0 ) |
46 |
|
pczdvds |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ) |
47 |
4 6 45 46
|
syl12anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ) |
48 |
|
pczcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 ∈ ℤ ∧ 𝐴 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) |
49 |
4 6 45 48
|
syl12anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) |
50 |
|
pcdvdsb |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐵 ∈ ℤ ∧ ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐵 ) ) |
51 |
4 7 49 50
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐵 ) ) |
52 |
31 51
|
mpbid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐵 ) |
53 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
54 |
4 53
|
syl |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → 𝑃 ∈ ℕ ) |
55 |
54 49
|
nnexpcld |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℕ ) |
56 |
55
|
nnzd |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℤ ) |
57 |
|
dvdsgcd |
⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐵 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝐴 gcd 𝐵 ) ) ) |
58 |
56 6 7 57
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( ( ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐴 ∧ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ 𝐵 ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝐴 gcd 𝐵 ) ) ) |
59 |
47 52 58
|
mp2and |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝐴 gcd 𝐵 ) ) |
60 |
|
pcdvdsb |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝑃 pCnt 𝐴 ) ∈ ℕ0 ) → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝐴 gcd 𝐵 ) ) ) |
61 |
4 14 49 60
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt 𝐴 ) ) ∥ ( 𝐴 gcd 𝐵 ) ) ) |
62 |
59 61
|
mpbird |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ) |
63 |
4 13
|
pccld |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ∈ ℕ0 ) |
64 |
63
|
nn0red |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ∈ ℝ ) |
65 |
64 33
|
letri3d |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ↔ ( ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ≤ ( 𝑃 pCnt 𝐴 ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) ) ) ) |
66 |
19 62 65
|
mpbir2and |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ∧ 𝐵 ≠ 0 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
67 |
66
|
anassrs |
⊢ ( ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) ∧ 𝐵 ≠ 0 ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
68 |
|
gcdid0 |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 gcd 0 ) = ( abs ‘ 𝐴 ) ) |
69 |
5 68
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐴 gcd 0 ) = ( abs ‘ 𝐴 ) ) |
70 |
69
|
oveq2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑃 pCnt ( 𝐴 gcd 0 ) ) = ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) ) |
71 |
|
pcabs |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℚ ) → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
72 |
20 71
|
sylan2 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ) → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
73 |
72
|
3adant3 |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑃 pCnt ( abs ‘ 𝐴 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
74 |
70 73
|
eqtrd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝑃 pCnt ( 𝐴 gcd 0 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
75 |
74
|
adantr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 0 ) ) = ( 𝑃 pCnt 𝐴 ) ) |
76 |
3 67 75
|
pm2.61ne |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝑃 pCnt 𝐴 ) ≤ ( 𝑃 pCnt 𝐵 ) ) → ( 𝑃 pCnt ( 𝐴 gcd 𝐵 ) ) = ( 𝑃 pCnt 𝐴 ) ) |