Step |
Hyp |
Ref |
Expression |
1 |
|
0lepnf |
⊢ 0 ≤ +∞ |
2 |
|
oveq2 |
⊢ ( 𝑁 = 0 → ( 𝑃 pCnt 𝑁 ) = ( 𝑃 pCnt 0 ) ) |
3 |
|
pc0 |
⊢ ( 𝑃 ∈ ℙ → ( 𝑃 pCnt 0 ) = +∞ ) |
4 |
3
|
adantr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → ( 𝑃 pCnt 0 ) = +∞ ) |
5 |
2 4
|
sylan9eqr |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → ( 𝑃 pCnt 𝑁 ) = +∞ ) |
6 |
1 5
|
breqtrrid |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 = 0 ) → 0 ≤ ( 𝑃 pCnt 𝑁 ) ) |
7 |
|
pczcl |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 pCnt 𝑁 ) ∈ ℕ0 ) |
8 |
7
|
nn0ge0d |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 0 ≤ ( 𝑃 pCnt 𝑁 ) ) |
9 |
8
|
anassrs |
⊢ ( ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) ∧ 𝑁 ≠ 0 ) → 0 ≤ ( 𝑃 pCnt 𝑁 ) ) |
10 |
6 9
|
pm2.61dane |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝑁 ∈ ℤ ) → 0 ≤ ( 𝑃 pCnt 𝑁 ) ) |