| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0lepnf | ⊢ 0  ≤  +∞ | 
						
							| 2 |  | oveq2 | ⊢ ( 𝑁  =  0  →  ( 𝑃  pCnt  𝑁 )  =  ( 𝑃  pCnt  0 ) ) | 
						
							| 3 |  | pc0 | ⊢ ( 𝑃  ∈  ℙ  →  ( 𝑃  pCnt  0 )  =  +∞ ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ℤ )  →  ( 𝑃  pCnt  0 )  =  +∞ ) | 
						
							| 5 | 2 4 | sylan9eqr | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ℤ )  ∧  𝑁  =  0 )  →  ( 𝑃  pCnt  𝑁 )  =  +∞ ) | 
						
							| 6 | 1 5 | breqtrrid | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ℤ )  ∧  𝑁  =  0 )  →  0  ≤  ( 𝑃  pCnt  𝑁 ) ) | 
						
							| 7 |  | pczcl | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0 ) )  →  ( 𝑃  pCnt  𝑁 )  ∈  ℕ0 ) | 
						
							| 8 | 7 | nn0ge0d | ⊢ ( ( 𝑃  ∈  ℙ  ∧  ( 𝑁  ∈  ℤ  ∧  𝑁  ≠  0 ) )  →  0  ≤  ( 𝑃  pCnt  𝑁 ) ) | 
						
							| 9 | 8 | anassrs | ⊢ ( ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ℤ )  ∧  𝑁  ≠  0 )  →  0  ≤  ( 𝑃  pCnt  𝑁 ) ) | 
						
							| 10 | 6 9 | pm2.61dane | ⊢ ( ( 𝑃  ∈  ℙ  ∧  𝑁  ∈  ℤ )  →  0  ≤  ( 𝑃  pCnt  𝑁 ) ) |