| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝑃 ∈ ℙ ) |
| 2 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
| 3 |
1 2
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝑃 ∈ ℕ ) |
| 4 |
|
simpr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℕ0 ) |
| 5 |
3 4
|
nnexpcld |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) ∈ ℕ ) |
| 6 |
1 5
|
pccld |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ0 ) |
| 7 |
6
|
nn0red |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ∈ ℝ ) |
| 8 |
7
|
leidd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) |
| 9 |
5
|
nnzd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) ∈ ℤ ) |
| 10 |
|
pcdvdsb |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 ↑ 𝐴 ) ∈ ℤ ∧ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
| 11 |
1 9 6 10
|
syl3anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
| 12 |
8 11
|
mpbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∥ ( 𝑃 ↑ 𝐴 ) ) |
| 13 |
3 6
|
nnexpcld |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∈ ℕ ) |
| 14 |
13
|
nnzd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∈ ℤ ) |
| 15 |
|
dvdsle |
⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∈ ℤ ∧ ( 𝑃 ↑ 𝐴 ) ∈ ℕ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∥ ( 𝑃 ↑ 𝐴 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ≤ ( 𝑃 ↑ 𝐴 ) ) ) |
| 16 |
14 5 15
|
syl2anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∥ ( 𝑃 ↑ 𝐴 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ≤ ( 𝑃 ↑ 𝐴 ) ) ) |
| 17 |
12 16
|
mpd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ≤ ( 𝑃 ↑ 𝐴 ) ) |
| 18 |
3
|
nnred |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝑃 ∈ ℝ ) |
| 19 |
6
|
nn0zd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ∈ ℤ ) |
| 20 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
| 21 |
20
|
adantl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℤ ) |
| 22 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
| 23 |
|
eluz2gt1 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑃 ) |
| 24 |
1 22 23
|
3syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 1 < 𝑃 ) |
| 25 |
18 19 21 24
|
leexp2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ 𝐴 ↔ ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ≤ ( 𝑃 ↑ 𝐴 ) ) ) |
| 26 |
17 25
|
mpbird |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ 𝐴 ) |
| 27 |
|
iddvds |
⊢ ( ( 𝑃 ↑ 𝐴 ) ∈ ℤ → ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ 𝐴 ) ) |
| 28 |
9 27
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ 𝐴 ) ) |
| 29 |
|
pcdvdsb |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 ↑ 𝐴 ) ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → ( 𝐴 ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ↔ ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
| 30 |
1 9 4 29
|
syl3anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝐴 ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ↔ ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
| 31 |
28 30
|
mpbird |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) |
| 32 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
| 33 |
32
|
adantl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
| 34 |
7 33
|
letri3d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ↔ ( ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ 𝐴 ∧ 𝐴 ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ) ) |
| 35 |
26 31 34
|
mpbir2and |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ) |