Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝑃 ∈ ℙ ) |
2 |
|
prmnn |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ℕ ) |
3 |
1 2
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝑃 ∈ ℕ ) |
4 |
|
simpr |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℕ0 ) |
5 |
3 4
|
nnexpcld |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) ∈ ℕ ) |
6 |
1 5
|
pccld |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ0 ) |
7 |
6
|
nn0red |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ∈ ℝ ) |
8 |
7
|
leidd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) |
9 |
5
|
nnzd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) ∈ ℤ ) |
10 |
|
pcdvdsb |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 ↑ 𝐴 ) ∈ ℤ ∧ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
11 |
1 9 6 10
|
syl3anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ↔ ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
12 |
8 11
|
mpbid |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∥ ( 𝑃 ↑ 𝐴 ) ) |
13 |
3 6
|
nnexpcld |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∈ ℕ ) |
14 |
13
|
nnzd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∈ ℤ ) |
15 |
|
dvdsle |
⊢ ( ( ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∈ ℤ ∧ ( 𝑃 ↑ 𝐴 ) ∈ ℕ ) → ( ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∥ ( 𝑃 ↑ 𝐴 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ≤ ( 𝑃 ↑ 𝐴 ) ) ) |
16 |
14 5 15
|
syl2anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ∥ ( 𝑃 ↑ 𝐴 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ≤ ( 𝑃 ↑ 𝐴 ) ) ) |
17 |
12 16
|
mpd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ≤ ( 𝑃 ↑ 𝐴 ) ) |
18 |
3
|
nnred |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝑃 ∈ ℝ ) |
19 |
6
|
nn0zd |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ∈ ℤ ) |
20 |
|
nn0z |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℤ ) |
21 |
20
|
adantl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℤ ) |
22 |
|
prmuz2 |
⊢ ( 𝑃 ∈ ℙ → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) |
23 |
|
eluz2gt1 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑃 ) |
24 |
1 22 23
|
3syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 1 < 𝑃 ) |
25 |
18 19 21 24
|
leexp2d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ 𝐴 ↔ ( 𝑃 ↑ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ≤ ( 𝑃 ↑ 𝐴 ) ) ) |
26 |
17 25
|
mpbird |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ 𝐴 ) |
27 |
|
iddvds |
⊢ ( ( 𝑃 ↑ 𝐴 ) ∈ ℤ → ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ 𝐴 ) ) |
28 |
9 27
|
syl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ 𝐴 ) ) |
29 |
|
pcdvdsb |
⊢ ( ( 𝑃 ∈ ℙ ∧ ( 𝑃 ↑ 𝐴 ) ∈ ℤ ∧ 𝐴 ∈ ℕ0 ) → ( 𝐴 ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ↔ ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
30 |
1 9 4 29
|
syl3anc |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝐴 ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ↔ ( 𝑃 ↑ 𝐴 ) ∥ ( 𝑃 ↑ 𝐴 ) ) ) |
31 |
28 30
|
mpbird |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) |
32 |
|
nn0re |
⊢ ( 𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ ) |
33 |
32
|
adantl |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → 𝐴 ∈ ℝ ) |
34 |
7 33
|
letri3d |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ↔ ( ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ≤ 𝐴 ∧ 𝐴 ≤ ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) ) ) ) |
35 |
26 31 34
|
mpbir2and |
⊢ ( ( 𝑃 ∈ ℙ ∧ 𝐴 ∈ ℕ0 ) → ( 𝑃 pCnt ( 𝑃 ↑ 𝐴 ) ) = 𝐴 ) |