Step |
Hyp |
Ref |
Expression |
1 |
|
pcl0.c |
⊢ 𝑈 = ( PCl ‘ 𝐾 ) |
2 |
|
0ss |
⊢ ∅ ⊆ ( Atoms ‘ 𝐾 ) |
3 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
4 |
|
eqid |
⊢ ( ⊥𝑃 ‘ 𝐾 ) = ( ⊥𝑃 ‘ 𝐾 ) |
5 |
3 4 1
|
pclss2polN |
⊢ ( ( 𝐾 ∈ HL ∧ ∅ ⊆ ( Atoms ‘ 𝐾 ) ) → ( 𝑈 ‘ ∅ ) ⊆ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ∅ ) ) ) |
6 |
2 5
|
mpan2 |
⊢ ( 𝐾 ∈ HL → ( 𝑈 ‘ ∅ ) ⊆ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ∅ ) ) ) |
7 |
4
|
2pol0N |
⊢ ( 𝐾 ∈ HL → ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ( ( ⊥𝑃 ‘ 𝐾 ) ‘ ∅ ) ) = ∅ ) |
8 |
6 7
|
sseqtrd |
⊢ ( 𝐾 ∈ HL → ( 𝑈 ‘ ∅ ) ⊆ ∅ ) |
9 |
|
ss0 |
⊢ ( ( 𝑈 ‘ ∅ ) ⊆ ∅ → ( 𝑈 ‘ ∅ ) = ∅ ) |
10 |
8 9
|
syl |
⊢ ( 𝐾 ∈ HL → ( 𝑈 ‘ ∅ ) = ∅ ) |