Step |
Hyp |
Ref |
Expression |
1 |
|
pcl0b.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
pcl0b.c |
⊢ 𝑈 = ( PCl ‘ 𝐾 ) |
3 |
1 2
|
pclssidN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴 ) → 𝑃 ⊆ ( 𝑈 ‘ 𝑃 ) ) |
4 |
|
eqimss |
⊢ ( ( 𝑈 ‘ 𝑃 ) = ∅ → ( 𝑈 ‘ 𝑃 ) ⊆ ∅ ) |
5 |
3 4
|
sylan9ss |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴 ) ∧ ( 𝑈 ‘ 𝑃 ) = ∅ ) → 𝑃 ⊆ ∅ ) |
6 |
|
ss0 |
⊢ ( 𝑃 ⊆ ∅ → 𝑃 = ∅ ) |
7 |
5 6
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴 ) ∧ ( 𝑈 ‘ 𝑃 ) = ∅ ) → 𝑃 = ∅ ) |
8 |
|
fveq2 |
⊢ ( 𝑃 = ∅ → ( 𝑈 ‘ 𝑃 ) = ( 𝑈 ‘ ∅ ) ) |
9 |
2
|
pcl0N |
⊢ ( 𝐾 ∈ HL → ( 𝑈 ‘ ∅ ) = ∅ ) |
10 |
8 9
|
sylan9eqr |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 = ∅ ) → ( 𝑈 ‘ 𝑃 ) = ∅ ) |
11 |
10
|
adantlr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴 ) ∧ 𝑃 = ∅ ) → ( 𝑈 ‘ 𝑃 ) = ∅ ) |
12 |
7 11
|
impbida |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ⊆ 𝐴 ) → ( ( 𝑈 ‘ 𝑃 ) = ∅ ↔ 𝑃 = ∅ ) ) |