Step |
Hyp |
Ref |
Expression |
1 |
|
pclid.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
2 |
|
pclid.c |
⊢ 𝑈 = ( PCl ‘ 𝐾 ) |
3 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ ( 𝑈 ‘ 𝑌 ) ) ) → 𝑋 ⊆ ( 𝑈 ‘ 𝑌 ) ) |
4 |
|
simpll |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ ( 𝑈 ‘ 𝑌 ) ) ) → 𝐾 ∈ 𝑉 ) |
5 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ ( 𝑈 ‘ 𝑌 ) ) ) → 𝑌 ⊆ 𝑋 ) |
6 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
7 |
6 1
|
psubssat |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
8 |
7
|
adantr |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ ( 𝑈 ‘ 𝑌 ) ) ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
9 |
6 2
|
pclssN |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) → ( 𝑈 ‘ 𝑌 ) ⊆ ( 𝑈 ‘ 𝑋 ) ) |
10 |
4 5 8 9
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ ( 𝑈 ‘ 𝑌 ) ) ) → ( 𝑈 ‘ 𝑌 ) ⊆ ( 𝑈 ‘ 𝑋 ) ) |
11 |
1 2
|
pclidN |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑈 ‘ 𝑋 ) = 𝑋 ) |
12 |
11
|
adantr |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ ( 𝑈 ‘ 𝑌 ) ) ) → ( 𝑈 ‘ 𝑋 ) = 𝑋 ) |
13 |
10 12
|
sseqtrd |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ ( 𝑈 ‘ 𝑌 ) ) ) → ( 𝑈 ‘ 𝑌 ) ⊆ 𝑋 ) |
14 |
3 13
|
eqssd |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝑌 ⊆ 𝑋 ∧ 𝑋 ⊆ ( 𝑈 ‘ 𝑌 ) ) ) → 𝑋 = ( 𝑈 ‘ 𝑌 ) ) |