Step |
Hyp |
Ref |
Expression |
1 |
|
pclfval.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
pclfval.s |
⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) |
3 |
|
pclfval.c |
⊢ 𝑈 = ( PCl ‘ 𝐾 ) |
4 |
1 2 3
|
pclvalN |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑋 ) = ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) |
5 |
1 2
|
atpsubN |
⊢ ( 𝐾 ∈ 𝑉 → 𝐴 ∈ 𝑆 ) |
6 |
|
sseq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑋 ⊆ 𝑦 ↔ 𝑋 ⊆ 𝐴 ) ) |
7 |
6
|
intminss |
⊢ ( ( 𝐴 ∈ 𝑆 ∧ 𝑋 ⊆ 𝐴 ) → ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ⊆ 𝐴 ) |
8 |
5 7
|
sylan |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ) → ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ⊆ 𝐴 ) |
9 |
|
r19.26 |
⊢ ( ∀ 𝑦 ∈ 𝑆 ( ( 𝑋 ⊆ 𝑦 → 𝑝 ∈ 𝑦 ) ∧ ( 𝑋 ⊆ 𝑦 → 𝑞 ∈ 𝑦 ) ) ↔ ( ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → 𝑝 ∈ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → 𝑞 ∈ 𝑦 ) ) ) |
10 |
|
jcab |
⊢ ( ( 𝑋 ⊆ 𝑦 → ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ) ) ↔ ( ( 𝑋 ⊆ 𝑦 → 𝑝 ∈ 𝑦 ) ∧ ( 𝑋 ⊆ 𝑦 → 𝑞 ∈ 𝑦 ) ) ) |
11 |
10
|
ralbii |
⊢ ( ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑆 ( ( 𝑋 ⊆ 𝑦 → 𝑝 ∈ 𝑦 ) ∧ ( 𝑋 ⊆ 𝑦 → 𝑞 ∈ 𝑦 ) ) ) |
12 |
|
vex |
⊢ 𝑝 ∈ V |
13 |
12
|
elintrab |
⊢ ( 𝑝 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → 𝑝 ∈ 𝑦 ) ) |
14 |
|
vex |
⊢ 𝑞 ∈ V |
15 |
14
|
elintrab |
⊢ ( 𝑞 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → 𝑞 ∈ 𝑦 ) ) |
16 |
13 15
|
anbi12i |
⊢ ( ( 𝑝 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∧ 𝑞 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) ↔ ( ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → 𝑝 ∈ 𝑦 ) ∧ ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → 𝑞 ∈ 𝑦 ) ) ) |
17 |
9 11 16
|
3bitr4ri |
⊢ ( ( 𝑝 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∧ 𝑞 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ) ) ) |
18 |
|
simpll1 |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ) ) → 𝐾 ∈ 𝑉 ) |
19 |
|
simplr |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ) ) → 𝑦 ∈ 𝑆 ) |
20 |
|
simpll3 |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ) ) → 𝑟 ∈ 𝐴 ) |
21 |
|
simprl |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ) ) → 𝑝 ∈ 𝑦 ) |
22 |
|
simprr |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ) ) → 𝑞 ∈ 𝑦 ) |
23 |
|
simpll2 |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ) ) → 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) |
24 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
25 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
26 |
24 25 1 2
|
psubspi2N |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑦 ∈ 𝑆 ∧ 𝑟 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) → 𝑟 ∈ 𝑦 ) |
27 |
18 19 20 21 22 23 26
|
syl33anc |
⊢ ( ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑆 ) ∧ ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ) ) → 𝑟 ∈ 𝑦 ) |
28 |
27
|
ex |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ) → 𝑟 ∈ 𝑦 ) ) |
29 |
28
|
imim2d |
⊢ ( ( ( 𝐾 ∈ 𝑉 ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝑆 ) → ( ( 𝑋 ⊆ 𝑦 → ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ) ) → ( 𝑋 ⊆ 𝑦 → 𝑟 ∈ 𝑦 ) ) ) |
30 |
29
|
ralimdva |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ) ) → ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → 𝑟 ∈ 𝑦 ) ) ) |
31 |
|
vex |
⊢ 𝑟 ∈ V |
32 |
31
|
elintrab |
⊢ ( 𝑟 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ↔ ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → 𝑟 ∈ 𝑦 ) ) |
33 |
30 32
|
syl6ibr |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟 ∈ 𝐴 ) → ( ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ) ) → 𝑟 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) ) |
34 |
33
|
3exp |
⊢ ( 𝐾 ∈ 𝑉 → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → ( 𝑟 ∈ 𝐴 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ) ) → 𝑟 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) ) ) ) |
35 |
34
|
com24 |
⊢ ( 𝐾 ∈ 𝑉 → ( ∀ 𝑦 ∈ 𝑆 ( 𝑋 ⊆ 𝑦 → ( 𝑝 ∈ 𝑦 ∧ 𝑞 ∈ 𝑦 ) ) → ( 𝑟 ∈ 𝐴 → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) ) ) ) |
36 |
17 35
|
syl5bi |
⊢ ( 𝐾 ∈ 𝑉 → ( ( 𝑝 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∧ 𝑞 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) → ( 𝑟 ∈ 𝐴 → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) ) ) ) |
37 |
36
|
ralrimdv |
⊢ ( 𝐾 ∈ 𝑉 → ( ( 𝑝 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∧ 𝑞 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) → ∀ 𝑟 ∈ 𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) ) ) |
38 |
37
|
ralrimivv |
⊢ ( 𝐾 ∈ 𝑉 → ∀ 𝑝 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∀ 𝑞 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∀ 𝑟 ∈ 𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) ) |
39 |
38
|
adantr |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ) → ∀ 𝑝 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∀ 𝑞 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∀ 𝑟 ∈ 𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) ) |
40 |
24 25 1 2
|
ispsubsp |
⊢ ( 𝐾 ∈ 𝑉 → ( ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∈ 𝑆 ↔ ( ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ⊆ 𝐴 ∧ ∀ 𝑝 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∀ 𝑞 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∀ 𝑟 ∈ 𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) ) ) ) |
41 |
40
|
adantr |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ) → ( ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∈ 𝑆 ↔ ( ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ⊆ 𝐴 ∧ ∀ 𝑝 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∀ 𝑞 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∀ 𝑟 ∈ 𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 ∈ ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) ) ) ) |
42 |
8 39 41
|
mpbir2and |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ) → ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ∈ 𝑆 ) |
43 |
4 42
|
eqeltrd |
⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑋 ) ∈ 𝑆 ) |