Metamath Proof Explorer


Theorem pclclN

Description: Closure of the projective subspace closure function. (Contributed by NM, 8-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclfval.a 𝐴 = ( Atoms ‘ 𝐾 )
pclfval.s 𝑆 = ( PSubSp ‘ 𝐾 )
pclfval.c 𝑈 = ( PCl ‘ 𝐾 )
Assertion pclclN ( ( 𝐾𝑉𝑋𝐴 ) → ( 𝑈𝑋 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 pclfval.a 𝐴 = ( Atoms ‘ 𝐾 )
2 pclfval.s 𝑆 = ( PSubSp ‘ 𝐾 )
3 pclfval.c 𝑈 = ( PCl ‘ 𝐾 )
4 1 2 3 pclvalN ( ( 𝐾𝑉𝑋𝐴 ) → ( 𝑈𝑋 ) = { 𝑦𝑆𝑋𝑦 } )
5 1 2 atpsubN ( 𝐾𝑉𝐴𝑆 )
6 sseq2 ( 𝑦 = 𝐴 → ( 𝑋𝑦𝑋𝐴 ) )
7 6 intminss ( ( 𝐴𝑆𝑋𝐴 ) → { 𝑦𝑆𝑋𝑦 } ⊆ 𝐴 )
8 5 7 sylan ( ( 𝐾𝑉𝑋𝐴 ) → { 𝑦𝑆𝑋𝑦 } ⊆ 𝐴 )
9 r19.26 ( ∀ 𝑦𝑆 ( ( 𝑋𝑦𝑝𝑦 ) ∧ ( 𝑋𝑦𝑞𝑦 ) ) ↔ ( ∀ 𝑦𝑆 ( 𝑋𝑦𝑝𝑦 ) ∧ ∀ 𝑦𝑆 ( 𝑋𝑦𝑞𝑦 ) ) )
10 jcab ( ( 𝑋𝑦 → ( 𝑝𝑦𝑞𝑦 ) ) ↔ ( ( 𝑋𝑦𝑝𝑦 ) ∧ ( 𝑋𝑦𝑞𝑦 ) ) )
11 10 ralbii ( ∀ 𝑦𝑆 ( 𝑋𝑦 → ( 𝑝𝑦𝑞𝑦 ) ) ↔ ∀ 𝑦𝑆 ( ( 𝑋𝑦𝑝𝑦 ) ∧ ( 𝑋𝑦𝑞𝑦 ) ) )
12 vex 𝑝 ∈ V
13 12 elintrab ( 𝑝 { 𝑦𝑆𝑋𝑦 } ↔ ∀ 𝑦𝑆 ( 𝑋𝑦𝑝𝑦 ) )
14 vex 𝑞 ∈ V
15 14 elintrab ( 𝑞 { 𝑦𝑆𝑋𝑦 } ↔ ∀ 𝑦𝑆 ( 𝑋𝑦𝑞𝑦 ) )
16 13 15 anbi12i ( ( 𝑝 { 𝑦𝑆𝑋𝑦 } ∧ 𝑞 { 𝑦𝑆𝑋𝑦 } ) ↔ ( ∀ 𝑦𝑆 ( 𝑋𝑦𝑝𝑦 ) ∧ ∀ 𝑦𝑆 ( 𝑋𝑦𝑞𝑦 ) ) )
17 9 11 16 3bitr4ri ( ( 𝑝 { 𝑦𝑆𝑋𝑦 } ∧ 𝑞 { 𝑦𝑆𝑋𝑦 } ) ↔ ∀ 𝑦𝑆 ( 𝑋𝑦 → ( 𝑝𝑦𝑞𝑦 ) ) )
18 simpll1 ( ( ( ( 𝐾𝑉𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟𝐴 ) ∧ 𝑦𝑆 ) ∧ ( 𝑝𝑦𝑞𝑦 ) ) → 𝐾𝑉 )
19 simplr ( ( ( ( 𝐾𝑉𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟𝐴 ) ∧ 𝑦𝑆 ) ∧ ( 𝑝𝑦𝑞𝑦 ) ) → 𝑦𝑆 )
20 simpll3 ( ( ( ( 𝐾𝑉𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟𝐴 ) ∧ 𝑦𝑆 ) ∧ ( 𝑝𝑦𝑞𝑦 ) ) → 𝑟𝐴 )
21 simprl ( ( ( ( 𝐾𝑉𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟𝐴 ) ∧ 𝑦𝑆 ) ∧ ( 𝑝𝑦𝑞𝑦 ) ) → 𝑝𝑦 )
22 simprr ( ( ( ( 𝐾𝑉𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟𝐴 ) ∧ 𝑦𝑆 ) ∧ ( 𝑝𝑦𝑞𝑦 ) ) → 𝑞𝑦 )
23 simpll2 ( ( ( ( 𝐾𝑉𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟𝐴 ) ∧ 𝑦𝑆 ) ∧ ( 𝑝𝑦𝑞𝑦 ) ) → 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) )
24 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
25 eqid ( join ‘ 𝐾 ) = ( join ‘ 𝐾 )
26 24 25 1 2 psubspi2N ( ( ( 𝐾𝑉𝑦𝑆𝑟𝐴 ) ∧ ( 𝑝𝑦𝑞𝑦𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) → 𝑟𝑦 )
27 18 19 20 21 22 23 26 syl33anc ( ( ( ( 𝐾𝑉𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟𝐴 ) ∧ 𝑦𝑆 ) ∧ ( 𝑝𝑦𝑞𝑦 ) ) → 𝑟𝑦 )
28 27 ex ( ( ( 𝐾𝑉𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟𝐴 ) ∧ 𝑦𝑆 ) → ( ( 𝑝𝑦𝑞𝑦 ) → 𝑟𝑦 ) )
29 28 imim2d ( ( ( 𝐾𝑉𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟𝐴 ) ∧ 𝑦𝑆 ) → ( ( 𝑋𝑦 → ( 𝑝𝑦𝑞𝑦 ) ) → ( 𝑋𝑦𝑟𝑦 ) ) )
30 29 ralimdva ( ( 𝐾𝑉𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟𝐴 ) → ( ∀ 𝑦𝑆 ( 𝑋𝑦 → ( 𝑝𝑦𝑞𝑦 ) ) → ∀ 𝑦𝑆 ( 𝑋𝑦𝑟𝑦 ) ) )
31 vex 𝑟 ∈ V
32 31 elintrab ( 𝑟 { 𝑦𝑆𝑋𝑦 } ↔ ∀ 𝑦𝑆 ( 𝑋𝑦𝑟𝑦 ) )
33 30 32 syl6ibr ( ( 𝐾𝑉𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∧ 𝑟𝐴 ) → ( ∀ 𝑦𝑆 ( 𝑋𝑦 → ( 𝑝𝑦𝑞𝑦 ) ) → 𝑟 { 𝑦𝑆𝑋𝑦 } ) )
34 33 3exp ( 𝐾𝑉 → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → ( 𝑟𝐴 → ( ∀ 𝑦𝑆 ( 𝑋𝑦 → ( 𝑝𝑦𝑞𝑦 ) ) → 𝑟 { 𝑦𝑆𝑋𝑦 } ) ) ) )
35 34 com24 ( 𝐾𝑉 → ( ∀ 𝑦𝑆 ( 𝑋𝑦 → ( 𝑝𝑦𝑞𝑦 ) ) → ( 𝑟𝐴 → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 { 𝑦𝑆𝑋𝑦 } ) ) ) )
36 17 35 syl5bi ( 𝐾𝑉 → ( ( 𝑝 { 𝑦𝑆𝑋𝑦 } ∧ 𝑞 { 𝑦𝑆𝑋𝑦 } ) → ( 𝑟𝐴 → ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 { 𝑦𝑆𝑋𝑦 } ) ) ) )
37 36 ralrimdv ( 𝐾𝑉 → ( ( 𝑝 { 𝑦𝑆𝑋𝑦 } ∧ 𝑞 { 𝑦𝑆𝑋𝑦 } ) → ∀ 𝑟𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 { 𝑦𝑆𝑋𝑦 } ) ) )
38 37 ralrimivv ( 𝐾𝑉 → ∀ 𝑝 { 𝑦𝑆𝑋𝑦 } ∀ 𝑞 { 𝑦𝑆𝑋𝑦 } ∀ 𝑟𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 { 𝑦𝑆𝑋𝑦 } ) )
39 38 adantr ( ( 𝐾𝑉𝑋𝐴 ) → ∀ 𝑝 { 𝑦𝑆𝑋𝑦 } ∀ 𝑞 { 𝑦𝑆𝑋𝑦 } ∀ 𝑟𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 { 𝑦𝑆𝑋𝑦 } ) )
40 24 25 1 2 ispsubsp ( 𝐾𝑉 → ( { 𝑦𝑆𝑋𝑦 } ∈ 𝑆 ↔ ( { 𝑦𝑆𝑋𝑦 } ⊆ 𝐴 ∧ ∀ 𝑝 { 𝑦𝑆𝑋𝑦 } ∀ 𝑞 { 𝑦𝑆𝑋𝑦 } ∀ 𝑟𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 { 𝑦𝑆𝑋𝑦 } ) ) ) )
41 40 adantr ( ( 𝐾𝑉𝑋𝐴 ) → ( { 𝑦𝑆𝑋𝑦 } ∈ 𝑆 ↔ ( { 𝑦𝑆𝑋𝑦 } ⊆ 𝐴 ∧ ∀ 𝑝 { 𝑦𝑆𝑋𝑦 } ∀ 𝑞 { 𝑦𝑆𝑋𝑦 } ∀ 𝑟𝐴 ( 𝑟 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) → 𝑟 { 𝑦𝑆𝑋𝑦 } ) ) ) )
42 8 39 41 mpbir2and ( ( 𝐾𝑉𝑋𝐴 ) → { 𝑦𝑆𝑋𝑦 } ∈ 𝑆 )
43 4 42 eqeltrd ( ( 𝐾𝑉𝑋𝐴 ) → ( 𝑈𝑋 ) ∈ 𝑆 )