Step |
Hyp |
Ref |
Expression |
1 |
|
pclfin.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
pclfin.c |
⊢ 𝑈 = ( PCl ‘ 𝐾 ) |
3 |
1 2
|
pclfinN |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑋 ) = ∪ 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) ( 𝑈 ‘ 𝑦 ) ) |
4 |
3
|
eleq2d |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑃 ∈ ( 𝑈 ‘ 𝑋 ) ↔ 𝑃 ∈ ∪ 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) ( 𝑈 ‘ 𝑦 ) ) ) |
5 |
|
eliun |
⊢ ( 𝑃 ∈ ∪ 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) ( 𝑈 ‘ 𝑦 ) ↔ ∃ 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) 𝑃 ∈ ( 𝑈 ‘ 𝑦 ) ) |
6 |
4 5
|
bitrdi |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑃 ∈ ( 𝑈 ‘ 𝑋 ) ↔ ∃ 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) 𝑃 ∈ ( 𝑈 ‘ 𝑦 ) ) ) |
7 |
|
elin |
⊢ ( 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) ↔ ( 𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋 ) ) |
8 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋 ) |
9 |
8
|
anim2i |
⊢ ( ( 𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋 ) ) |
10 |
7 9
|
sylbi |
⊢ ( 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) → ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋 ) ) |
11 |
10
|
anim1i |
⊢ ( ( 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) ∧ 𝑃 ∈ ( 𝑈 ‘ 𝑦 ) ) → ( ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( 𝑈 ‘ 𝑦 ) ) ) |
12 |
|
anass |
⊢ ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ⊆ 𝑋 ) ∧ 𝑃 ∈ ( 𝑈 ‘ 𝑦 ) ) ↔ ( 𝑦 ∈ Fin ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ ( 𝑈 ‘ 𝑦 ) ) ) ) |
13 |
11 12
|
sylib |
⊢ ( ( 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) ∧ 𝑃 ∈ ( 𝑈 ‘ 𝑦 ) ) → ( 𝑦 ∈ Fin ∧ ( 𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ ( 𝑈 ‘ 𝑦 ) ) ) ) |
14 |
13
|
reximi2 |
⊢ ( ∃ 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) 𝑃 ∈ ( 𝑈 ‘ 𝑦 ) → ∃ 𝑦 ∈ Fin ( 𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ ( 𝑈 ‘ 𝑦 ) ) ) |
15 |
6 14
|
syl6bi |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑃 ∈ ( 𝑈 ‘ 𝑋 ) → ∃ 𝑦 ∈ Fin ( 𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ ( 𝑈 ‘ 𝑦 ) ) ) ) |
16 |
15
|
3impia |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑋 ⊆ 𝐴 ∧ 𝑃 ∈ ( 𝑈 ‘ 𝑋 ) ) → ∃ 𝑦 ∈ Fin ( 𝑦 ⊆ 𝑋 ∧ 𝑃 ∈ ( 𝑈 ‘ 𝑦 ) ) ) |