Metamath Proof Explorer


Theorem pclcmpatN

Description: The set of projective subspaces is compactly atomistic: if an atom is in the projective subspace closure of a set of atoms, it also belongs to the projective subspace closure of a finite subset of that set. Analogous to Lemma 3.3.10 of PtakPulmannova p. 74. (Contributed by NM, 10-Sep-2013) (New usage is discouraged.)

Ref Expression
Hypotheses pclfin.a 𝐴 = ( Atoms ‘ 𝐾 )
pclfin.c 𝑈 = ( PCl ‘ 𝐾 )
Assertion pclcmpatN ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐴𝑃 ∈ ( 𝑈𝑋 ) ) → ∃ 𝑦 ∈ Fin ( 𝑦𝑋𝑃 ∈ ( 𝑈𝑦 ) ) )

Proof

Step Hyp Ref Expression
1 pclfin.a 𝐴 = ( Atoms ‘ 𝐾 )
2 pclfin.c 𝑈 = ( PCl ‘ 𝐾 )
3 1 2 pclfinN ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐴 ) → ( 𝑈𝑋 ) = 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) ( 𝑈𝑦 ) )
4 3 eleq2d ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐴 ) → ( 𝑃 ∈ ( 𝑈𝑋 ) ↔ 𝑃 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) ( 𝑈𝑦 ) ) )
5 eliun ( 𝑃 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) ( 𝑈𝑦 ) ↔ ∃ 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) 𝑃 ∈ ( 𝑈𝑦 ) )
6 4 5 bitrdi ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐴 ) → ( 𝑃 ∈ ( 𝑈𝑋 ) ↔ ∃ 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) 𝑃 ∈ ( 𝑈𝑦 ) ) )
7 elin ( 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) ↔ ( 𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋 ) )
8 elpwi ( 𝑦 ∈ 𝒫 𝑋𝑦𝑋 )
9 8 anim2i ( ( 𝑦 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝑋 ) → ( 𝑦 ∈ Fin ∧ 𝑦𝑋 ) )
10 7 9 sylbi ( 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) → ( 𝑦 ∈ Fin ∧ 𝑦𝑋 ) )
11 10 anim1i ( ( 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) ∧ 𝑃 ∈ ( 𝑈𝑦 ) ) → ( ( 𝑦 ∈ Fin ∧ 𝑦𝑋 ) ∧ 𝑃 ∈ ( 𝑈𝑦 ) ) )
12 anass ( ( ( 𝑦 ∈ Fin ∧ 𝑦𝑋 ) ∧ 𝑃 ∈ ( 𝑈𝑦 ) ) ↔ ( 𝑦 ∈ Fin ∧ ( 𝑦𝑋𝑃 ∈ ( 𝑈𝑦 ) ) ) )
13 11 12 sylib ( ( 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) ∧ 𝑃 ∈ ( 𝑈𝑦 ) ) → ( 𝑦 ∈ Fin ∧ ( 𝑦𝑋𝑃 ∈ ( 𝑈𝑦 ) ) ) )
14 13 reximi2 ( ∃ 𝑦 ∈ ( Fin ∩ 𝒫 𝑋 ) 𝑃 ∈ ( 𝑈𝑦 ) → ∃ 𝑦 ∈ Fin ( 𝑦𝑋𝑃 ∈ ( 𝑈𝑦 ) ) )
15 6 14 syl6bi ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐴 ) → ( 𝑃 ∈ ( 𝑈𝑋 ) → ∃ 𝑦 ∈ Fin ( 𝑦𝑋𝑃 ∈ ( 𝑈𝑦 ) ) ) )
16 15 3impia ( ( 𝐾 ∈ AtLat ∧ 𝑋𝐴𝑃 ∈ ( 𝑈𝑋 ) ) → ∃ 𝑦 ∈ Fin ( 𝑦𝑋𝑃 ∈ ( 𝑈𝑦 ) ) )