Step |
Hyp |
Ref |
Expression |
1 |
|
pclem.1 |
⊢ 𝐴 = { 𝑛 ∈ ℕ0 ∣ ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 } |
2 |
1
|
ssrab3 |
⊢ 𝐴 ⊆ ℕ0 |
3 |
|
nn0ssz |
⊢ ℕ0 ⊆ ℤ |
4 |
2 3
|
sstri |
⊢ 𝐴 ⊆ ℤ |
5 |
4
|
a1i |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝐴 ⊆ ℤ ) |
6 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
7 |
6
|
a1i |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 0 ∈ ℕ0 ) |
8 |
|
eluzelcn |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℂ ) |
9 |
8
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑃 ∈ ℂ ) |
10 |
9
|
exp0d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ 0 ) = 1 ) |
11 |
|
1dvds |
⊢ ( 𝑁 ∈ ℤ → 1 ∥ 𝑁 ) |
12 |
11
|
ad2antrl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 1 ∥ 𝑁 ) |
13 |
10 12
|
eqbrtrd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝑃 ↑ 0 ) ∥ 𝑁 ) |
14 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 0 ) ) |
15 |
14
|
breq1d |
⊢ ( 𝑛 = 0 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 ↔ ( 𝑃 ↑ 0 ) ∥ 𝑁 ) ) |
16 |
15 1
|
elrab2 |
⊢ ( 0 ∈ 𝐴 ↔ ( 0 ∈ ℕ0 ∧ ( 𝑃 ↑ 0 ) ∥ 𝑁 ) ) |
17 |
7 13 16
|
sylanbrc |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 0 ∈ 𝐴 ) |
18 |
17
|
ne0d |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝐴 ≠ ∅ ) |
19 |
|
nnssz |
⊢ ℕ ⊆ ℤ |
20 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
21 |
20
|
abscld |
⊢ ( 𝑁 ∈ ℤ → ( abs ‘ 𝑁 ) ∈ ℝ ) |
22 |
21
|
ad2antrl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( abs ‘ 𝑁 ) ∈ ℝ ) |
23 |
|
eluzelre |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℝ ) |
24 |
23
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 𝑃 ∈ ℝ ) |
25 |
|
eluz2gt1 |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 1 < 𝑃 ) |
26 |
25
|
adantr |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → 1 < 𝑃 ) |
27 |
|
expnbnd |
⊢ ( ( ( abs ‘ 𝑁 ) ∈ ℝ ∧ 𝑃 ∈ ℝ ∧ 1 < 𝑃 ) → ∃ 𝑥 ∈ ℕ ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) ) |
28 |
22 24 26 27
|
syl3anc |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ∃ 𝑥 ∈ ℕ ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) ) |
29 |
|
simprr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ 𝐴 ) |
30 |
|
oveq2 |
⊢ ( 𝑛 = 𝑦 → ( 𝑃 ↑ 𝑛 ) = ( 𝑃 ↑ 𝑦 ) ) |
31 |
30
|
breq1d |
⊢ ( 𝑛 = 𝑦 → ( ( 𝑃 ↑ 𝑛 ) ∥ 𝑁 ↔ ( 𝑃 ↑ 𝑦 ) ∥ 𝑁 ) ) |
32 |
31 1
|
elrab2 |
⊢ ( 𝑦 ∈ 𝐴 ↔ ( 𝑦 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑦 ) ∥ 𝑁 ) ) |
33 |
29 32
|
sylib |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 ∈ ℕ0 ∧ ( 𝑃 ↑ 𝑦 ) ∥ 𝑁 ) ) |
34 |
33
|
simprd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑃 ↑ 𝑦 ) ∥ 𝑁 ) |
35 |
|
eluz2nn |
⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℕ ) |
36 |
35
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑃 ∈ ℕ ) |
37 |
33
|
simpld |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ ℕ0 ) |
38 |
36 37
|
nnexpcld |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑃 ↑ 𝑦 ) ∈ ℕ ) |
39 |
38
|
nnzd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑃 ↑ 𝑦 ) ∈ ℤ ) |
40 |
|
simplrl |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑁 ∈ ℤ ) |
41 |
|
simplrr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑁 ≠ 0 ) |
42 |
|
dvdsleabs |
⊢ ( ( ( 𝑃 ↑ 𝑦 ) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) → ( ( 𝑃 ↑ 𝑦 ) ∥ 𝑁 → ( 𝑃 ↑ 𝑦 ) ≤ ( abs ‘ 𝑁 ) ) ) |
43 |
39 40 41 42
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑃 ↑ 𝑦 ) ∥ 𝑁 → ( 𝑃 ↑ 𝑦 ) ≤ ( abs ‘ 𝑁 ) ) ) |
44 |
34 43
|
mpd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑃 ↑ 𝑦 ) ≤ ( abs ‘ 𝑁 ) ) |
45 |
38
|
nnred |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑃 ↑ 𝑦 ) ∈ ℝ ) |
46 |
22
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( abs ‘ 𝑁 ) ∈ ℝ ) |
47 |
23
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑃 ∈ ℝ ) |
48 |
|
nnnn0 |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℕ0 ) |
49 |
48
|
ad2antrl |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ ℕ0 ) |
50 |
47 49
|
reexpcld |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑃 ↑ 𝑥 ) ∈ ℝ ) |
51 |
|
lelttr |
⊢ ( ( ( 𝑃 ↑ 𝑦 ) ∈ ℝ ∧ ( abs ‘ 𝑁 ) ∈ ℝ ∧ ( 𝑃 ↑ 𝑥 ) ∈ ℝ ) → ( ( ( 𝑃 ↑ 𝑦 ) ≤ ( abs ‘ 𝑁 ) ∧ ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) ) → ( 𝑃 ↑ 𝑦 ) < ( 𝑃 ↑ 𝑥 ) ) ) |
52 |
45 46 50 51
|
syl3anc |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( ( ( 𝑃 ↑ 𝑦 ) ≤ ( abs ‘ 𝑁 ) ∧ ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) ) → ( 𝑃 ↑ 𝑦 ) < ( 𝑃 ↑ 𝑥 ) ) ) |
53 |
44 52
|
mpand |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) → ( 𝑃 ↑ 𝑦 ) < ( 𝑃 ↑ 𝑥 ) ) ) |
54 |
37
|
nn0zd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ ℤ ) |
55 |
|
nnz |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℤ ) |
56 |
55
|
ad2antrl |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ ℤ ) |
57 |
25
|
ad2antrr |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 1 < 𝑃 ) |
58 |
47 54 56 57
|
ltexp2d |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 < 𝑥 ↔ ( 𝑃 ↑ 𝑦 ) < ( 𝑃 ↑ 𝑥 ) ) ) |
59 |
53 58
|
sylibrd |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) → 𝑦 < 𝑥 ) ) |
60 |
37
|
nn0red |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑦 ∈ ℝ ) |
61 |
|
nnre |
⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) |
62 |
61
|
ad2antrl |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → 𝑥 ∈ ℝ ) |
63 |
|
ltle |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝑦 < 𝑥 → 𝑦 ≤ 𝑥 ) ) |
64 |
60 62 63
|
syl2anc |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( 𝑦 < 𝑥 → 𝑦 ≤ 𝑥 ) ) |
65 |
59 64
|
syld |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ 𝐴 ) ) → ( ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) → 𝑦 ≤ 𝑥 ) ) |
66 |
65
|
anassrs |
⊢ ( ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ 𝑥 ∈ ℕ ) ∧ 𝑦 ∈ 𝐴 ) → ( ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) → 𝑦 ≤ 𝑥 ) ) |
67 |
66
|
ralrimdva |
⊢ ( ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) ∧ 𝑥 ∈ ℕ ) → ( ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) → ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
68 |
67
|
reximdva |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( ∃ 𝑥 ∈ ℕ ( abs ‘ 𝑁 ) < ( 𝑃 ↑ 𝑥 ) → ∃ 𝑥 ∈ ℕ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
69 |
28 68
|
mpd |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ∃ 𝑥 ∈ ℕ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
70 |
|
ssrexv |
⊢ ( ℕ ⊆ ℤ → ( ∃ 𝑥 ∈ ℕ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |
71 |
19 69 70
|
mpsyl |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) |
72 |
5 18 71
|
3jca |
⊢ ( ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑁 ≠ 0 ) ) → ( 𝐴 ⊆ ℤ ∧ 𝐴 ≠ ∅ ∧ ∃ 𝑥 ∈ ℤ ∀ 𝑦 ∈ 𝐴 𝑦 ≤ 𝑥 ) ) |