Description: Negation inferred from embedded conjunct. (Contributed by NM, 20-Aug-1993) (Proof shortened by Wolf Lammen, 25-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pclem6 | ⊢ ( ( 𝜑 ↔ ( 𝜓 ∧ ¬ 𝜑 ) ) → ¬ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ibar | ⊢ ( 𝜓 → ( ¬ 𝜑 ↔ ( 𝜓 ∧ ¬ 𝜑 ) ) ) | |
| 2 | nbbn | ⊢ ( ( ¬ 𝜑 ↔ ( 𝜓 ∧ ¬ 𝜑 ) ) ↔ ¬ ( 𝜑 ↔ ( 𝜓 ∧ ¬ 𝜑 ) ) ) | |
| 3 | 1 2 | sylib | ⊢ ( 𝜓 → ¬ ( 𝜑 ↔ ( 𝜓 ∧ ¬ 𝜑 ) ) ) |
| 4 | 3 | con2i | ⊢ ( ( 𝜑 ↔ ( 𝜓 ∧ ¬ 𝜑 ) ) → ¬ 𝜓 ) |