Metamath Proof Explorer


Theorem pclem6

Description: Negation inferred from embedded conjunct. (Contributed by NM, 20-Aug-1993) (Proof shortened by Wolf Lammen, 25-Nov-2012)

Ref Expression
Assertion pclem6 ( ( 𝜑 ↔ ( 𝜓 ∧ ¬ 𝜑 ) ) → ¬ 𝜓 )

Proof

Step Hyp Ref Expression
1 ibar ( 𝜓 → ( ¬ 𝜑 ↔ ( 𝜓 ∧ ¬ 𝜑 ) ) )
2 nbbn ( ( ¬ 𝜑 ↔ ( 𝜓 ∧ ¬ 𝜑 ) ) ↔ ¬ ( 𝜑 ↔ ( 𝜓 ∧ ¬ 𝜑 ) ) )
3 1 2 sylib ( 𝜓 → ¬ ( 𝜑 ↔ ( 𝜓 ∧ ¬ 𝜑 ) ) )
4 3 con2i ( ( 𝜑 ↔ ( 𝜓 ∧ ¬ 𝜑 ) ) → ¬ 𝜓 )