Step |
Hyp |
Ref |
Expression |
1 |
|
pclfincl.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
2 |
|
pclfincl.c |
⊢ 𝑈 = ( PCl ‘ 𝐾 ) |
3 |
|
pclfincl.s |
⊢ 𝑆 = ( PSubCl ‘ 𝐾 ) |
4 |
|
sseq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ⊆ 𝐴 ↔ ∅ ⊆ 𝐴 ) ) |
5 |
4
|
anbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝐾 ∈ HL ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝐾 ∈ HL ∧ ∅ ⊆ 𝐴 ) ) ) |
6 |
|
fveq2 |
⊢ ( 𝑥 = ∅ → ( 𝑈 ‘ 𝑥 ) = ( 𝑈 ‘ ∅ ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑥 = ∅ → ( ( 𝑈 ‘ 𝑥 ) ∈ 𝑆 ↔ ( 𝑈 ‘ ∅ ) ∈ 𝑆 ) ) |
8 |
5 7
|
imbi12d |
⊢ ( 𝑥 = ∅ → ( ( ( 𝐾 ∈ HL ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ( 𝐾 ∈ HL ∧ ∅ ⊆ 𝐴 ) → ( 𝑈 ‘ ∅ ) ∈ 𝑆 ) ) ) |
9 |
|
sseq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ⊆ 𝐴 ↔ 𝑦 ⊆ 𝐴 ) ) |
10 |
9
|
anbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐾 ∈ HL ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ) |
11 |
|
fveq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑈 ‘ 𝑥 ) = ( 𝑈 ‘ 𝑦 ) ) |
12 |
11
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑈 ‘ 𝑥 ) ∈ 𝑆 ↔ ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ) ) |
13 |
10 12
|
imbi12d |
⊢ ( 𝑥 = 𝑦 → ( ( ( 𝐾 ∈ HL ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ) ) ) |
14 |
|
sseq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑥 ⊆ 𝐴 ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) |
15 |
14
|
anbi2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐾 ∈ HL ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝐾 ∈ HL ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) ) |
16 |
|
fveq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑈 ‘ 𝑥 ) = ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
17 |
16
|
eleq1d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝑈 ‘ 𝑥 ) ∈ 𝑆 ↔ ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ 𝑆 ) ) |
18 |
15 17
|
imbi12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( ( 𝐾 ∈ HL ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ( 𝐾 ∈ HL ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ 𝑆 ) ) ) |
19 |
|
sseq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ⊆ 𝐴 ↔ 𝑋 ⊆ 𝐴 ) ) |
20 |
19
|
anbi2d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐾 ∈ HL ∧ 𝑥 ⊆ 𝐴 ) ↔ ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) ) ) |
21 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝑈 ‘ 𝑥 ) = ( 𝑈 ‘ 𝑋 ) ) |
22 |
21
|
eleq1d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑈 ‘ 𝑥 ) ∈ 𝑆 ↔ ( 𝑈 ‘ 𝑋 ) ∈ 𝑆 ) ) |
23 |
20 22
|
imbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( ( 𝐾 ∈ HL ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑥 ) ∈ 𝑆 ) ↔ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑋 ) ∈ 𝑆 ) ) ) |
24 |
2
|
pcl0N |
⊢ ( 𝐾 ∈ HL → ( 𝑈 ‘ ∅ ) = ∅ ) |
25 |
3
|
0psubclN |
⊢ ( 𝐾 ∈ HL → ∅ ∈ 𝑆 ) |
26 |
24 25
|
eqeltrd |
⊢ ( 𝐾 ∈ HL → ( 𝑈 ‘ ∅ ) ∈ 𝑆 ) |
27 |
26
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ ∅ ⊆ 𝐴 ) → ( 𝑈 ‘ ∅ ) ∈ 𝑆 ) |
28 |
|
anass |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) ↔ ( 𝐾 ∈ HL ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ) |
29 |
|
vex |
⊢ 𝑧 ∈ V |
30 |
29
|
snss |
⊢ ( 𝑧 ∈ 𝐴 ↔ { 𝑧 } ⊆ 𝐴 ) |
31 |
30
|
anbi2i |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ↔ ( 𝑦 ⊆ 𝐴 ∧ { 𝑧 } ⊆ 𝐴 ) ) |
32 |
|
unss |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ { 𝑧 } ⊆ 𝐴 ) ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
33 |
31 32
|
bitri |
⊢ ( ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
34 |
33
|
anbi2i |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) ↔ ( 𝐾 ∈ HL ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ) |
35 |
28 34
|
bitr2i |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) ↔ ( ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) ) |
36 |
|
simpllr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 = ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 = ∅ ) |
37 |
36
|
uneq1d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 = ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 ∪ { 𝑧 } ) = ( ∅ ∪ { 𝑧 } ) ) |
38 |
|
uncom |
⊢ ( ∅ ∪ { 𝑧 } ) = ( { 𝑧 } ∪ ∅ ) |
39 |
|
un0 |
⊢ ( { 𝑧 } ∪ ∅ ) = { 𝑧 } |
40 |
38 39
|
eqtri |
⊢ ( ∅ ∪ { 𝑧 } ) = { 𝑧 } |
41 |
37 40
|
eqtrdi |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 = ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 ∪ { 𝑧 } ) = { 𝑧 } ) |
42 |
41
|
fveq2d |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 = ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( 𝑈 ‘ { 𝑧 } ) ) |
43 |
|
simplrl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 = ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
44 |
|
hlatl |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ AtLat ) |
45 |
43 44
|
syl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 = ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → 𝐾 ∈ AtLat ) |
46 |
|
simprr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 = ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑧 ∈ 𝐴 ) |
47 |
|
eqid |
⊢ ( PSubSp ‘ 𝐾 ) = ( PSubSp ‘ 𝐾 ) |
48 |
1 47
|
snatpsubN |
⊢ ( ( 𝐾 ∈ AtLat ∧ 𝑧 ∈ 𝐴 ) → { 𝑧 } ∈ ( PSubSp ‘ 𝐾 ) ) |
49 |
45 46 48
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 = ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → { 𝑧 } ∈ ( PSubSp ‘ 𝐾 ) ) |
50 |
47 2
|
pclidN |
⊢ ( ( 𝐾 ∈ HL ∧ { 𝑧 } ∈ ( PSubSp ‘ 𝐾 ) ) → ( 𝑈 ‘ { 𝑧 } ) = { 𝑧 } ) |
51 |
43 49 50
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 = ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑈 ‘ { 𝑧 } ) = { 𝑧 } ) |
52 |
42 51
|
eqtrd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 = ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) = { 𝑧 } ) |
53 |
1 3
|
atpsubclN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑧 ∈ 𝐴 ) → { 𝑧 } ∈ 𝑆 ) |
54 |
43 46 53
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 = ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → { 𝑧 } ∈ 𝑆 ) |
55 |
52 54
|
eqeltrd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 = ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ 𝑆 ) |
56 |
55
|
exp43 |
⊢ ( ( 𝑦 ∈ Fin ∧ 𝑦 = ∅ ) → ( ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) → ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 → ( 𝑧 ∈ 𝐴 → ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ 𝑆 ) ) ) ) |
57 |
|
simplrl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
58 |
1 2
|
pclssidN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ ( 𝑈 ‘ 𝑦 ) ) |
59 |
58
|
ad2antlr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ⊆ ( 𝑈 ‘ 𝑦 ) ) |
60 |
|
unss1 |
⊢ ( 𝑦 ⊆ ( 𝑈 ‘ 𝑦 ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ( ( 𝑈 ‘ 𝑦 ) ∪ { 𝑧 } ) ) |
61 |
59 60
|
syl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ( ( 𝑈 ‘ 𝑦 ) ∪ { 𝑧 } ) ) |
62 |
|
simprl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ) |
63 |
1 3
|
psubclssatN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ) → ( 𝑈 ‘ 𝑦 ) ⊆ 𝐴 ) |
64 |
57 62 63
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑈 ‘ 𝑦 ) ⊆ 𝐴 ) |
65 |
|
snssi |
⊢ ( 𝑧 ∈ 𝐴 → { 𝑧 } ⊆ 𝐴 ) |
66 |
65
|
ad2antll |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → { 𝑧 } ⊆ 𝐴 ) |
67 |
|
eqid |
⊢ ( +𝑃 ‘ 𝐾 ) = ( +𝑃 ‘ 𝐾 ) |
68 |
1 67
|
paddunssN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑈 ‘ 𝑦 ) ⊆ 𝐴 ∧ { 𝑧 } ⊆ 𝐴 ) → ( ( 𝑈 ‘ 𝑦 ) ∪ { 𝑧 } ) ⊆ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ) |
69 |
57 64 66 68
|
syl3anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑈 ‘ 𝑦 ) ∪ { 𝑧 } ) ⊆ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ) |
70 |
61 69
|
sstrd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ) |
71 |
1 67
|
paddssat |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑈 ‘ 𝑦 ) ⊆ 𝐴 ∧ { 𝑧 } ⊆ 𝐴 ) → ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ⊆ 𝐴 ) |
72 |
57 64 66 71
|
syl3anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ⊆ 𝐴 ) |
73 |
1 2
|
pclssN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ∧ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ⊆ 𝐴 ) → ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ⊆ ( 𝑈 ‘ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ) ) |
74 |
57 70 72 73
|
syl3anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ⊆ ( 𝑈 ‘ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ) ) |
75 |
|
simprr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑧 ∈ 𝐴 ) |
76 |
1 67 3
|
paddatclN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ∈ 𝑆 ) |
77 |
57 62 75 76
|
syl3anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ∈ 𝑆 ) |
78 |
47 3
|
psubclsubN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ∈ 𝑆 ) → ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ∈ ( PSubSp ‘ 𝐾 ) ) |
79 |
57 77 78
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ∈ ( PSubSp ‘ 𝐾 ) ) |
80 |
47 2
|
pclidN |
⊢ ( ( 𝐾 ∈ HL ∧ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ∈ ( PSubSp ‘ 𝐾 ) ) → ( 𝑈 ‘ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ) = ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ) |
81 |
57 79 80
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑈 ‘ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ) = ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ) |
82 |
74 81
|
sseqtrd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ⊆ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ) |
83 |
57
|
hllatd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
84 |
|
simpllr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ≠ ∅ ) |
85 |
1 2
|
pcl0bN |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) → ( ( 𝑈 ‘ 𝑦 ) = ∅ ↔ 𝑦 = ∅ ) ) |
86 |
85
|
ad2antlr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑈 ‘ 𝑦 ) = ∅ ↔ 𝑦 = ∅ ) ) |
87 |
86
|
necon3bid |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑈 ‘ 𝑦 ) ≠ ∅ ↔ 𝑦 ≠ ∅ ) ) |
88 |
84 87
|
mpbird |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑈 ‘ 𝑦 ) ≠ ∅ ) |
89 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
90 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
91 |
89 90 1 67
|
elpaddat |
⊢ ( ( ( 𝐾 ∈ Lat ∧ ( 𝑈 ‘ 𝑦 ) ⊆ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ∧ ( 𝑈 ‘ 𝑦 ) ≠ ∅ ) → ( 𝑞 ∈ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ↔ ( 𝑞 ∈ 𝐴 ∧ ∃ 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) ) ) ) |
92 |
83 64 75 88 91
|
syl31anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑞 ∈ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ↔ ( 𝑞 ∈ 𝐴 ∧ ∃ 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) ) ) ) |
93 |
|
simp1rl |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → 𝐾 ∈ HL ) |
94 |
93
|
3ad2ant1 |
⊢ ( ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) ∧ 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) ) → 𝐾 ∈ HL ) |
95 |
94
|
adantr |
⊢ ( ( ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) ∧ 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) ) ∧ ( 𝑤 ∈ ( PSubSp ‘ 𝐾 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 ) ) → 𝐾 ∈ HL ) |
96 |
|
simprl |
⊢ ( ( ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) ∧ 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) ) ∧ ( 𝑤 ∈ ( PSubSp ‘ 𝐾 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 ) ) → 𝑤 ∈ ( PSubSp ‘ 𝐾 ) ) |
97 |
|
simpl13 |
⊢ ( ( ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) ∧ 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) ) ∧ ( 𝑤 ∈ ( PSubSp ‘ 𝐾 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 ) ) → 𝑞 ∈ 𝐴 ) |
98 |
|
unss |
⊢ ( ( 𝑦 ⊆ 𝑤 ∧ { 𝑧 } ⊆ 𝑤 ) ↔ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 ) |
99 |
|
simpl |
⊢ ( ( 𝑦 ⊆ 𝑤 ∧ { 𝑧 } ⊆ 𝑤 ) → 𝑦 ⊆ 𝑤 ) |
100 |
98 99
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 → 𝑦 ⊆ 𝑤 ) |
101 |
100
|
ad2antll |
⊢ ( ( ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) ∧ 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) ) ∧ ( 𝑤 ∈ ( PSubSp ‘ 𝐾 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 ) ) → 𝑦 ⊆ 𝑤 ) |
102 |
|
simpl2 |
⊢ ( ( ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) ∧ 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) ) ∧ ( 𝑤 ∈ ( PSubSp ‘ 𝐾 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 ) ) → 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) ) |
103 |
47 2
|
elpcliN |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝑤 ∧ 𝑤 ∈ ( PSubSp ‘ 𝐾 ) ) ∧ 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) ) → 𝑝 ∈ 𝑤 ) |
104 |
95 101 96 102 103
|
syl31anc |
⊢ ( ( ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) ∧ 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) ) ∧ ( 𝑤 ∈ ( PSubSp ‘ 𝐾 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 ) ) → 𝑝 ∈ 𝑤 ) |
105 |
29
|
snss |
⊢ ( 𝑧 ∈ 𝑤 ↔ { 𝑧 } ⊆ 𝑤 ) |
106 |
105
|
biimpri |
⊢ ( { 𝑧 } ⊆ 𝑤 → 𝑧 ∈ 𝑤 ) |
107 |
106
|
adantl |
⊢ ( ( 𝑦 ⊆ 𝑤 ∧ { 𝑧 } ⊆ 𝑤 ) → 𝑧 ∈ 𝑤 ) |
108 |
98 107
|
sylbir |
⊢ ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 → 𝑧 ∈ 𝑤 ) |
109 |
108
|
ad2antll |
⊢ ( ( ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) ∧ 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) ) ∧ ( 𝑤 ∈ ( PSubSp ‘ 𝐾 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 ) ) → 𝑧 ∈ 𝑤 ) |
110 |
|
simpl3 |
⊢ ( ( ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) ∧ 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) ) ∧ ( 𝑤 ∈ ( PSubSp ‘ 𝐾 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 ) ) → 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) ) |
111 |
89 90 1 47
|
psubspi2N |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑤 ∈ ( PSubSp ‘ 𝐾 ) ∧ 𝑞 ∈ 𝐴 ) ∧ ( 𝑝 ∈ 𝑤 ∧ 𝑧 ∈ 𝑤 ∧ 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) ) ) → 𝑞 ∈ 𝑤 ) |
112 |
95 96 97 104 109 110 111
|
syl33anc |
⊢ ( ( ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) ∧ 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) ∧ 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) ) ∧ ( 𝑤 ∈ ( PSubSp ‘ 𝐾 ) ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 ) ) → 𝑞 ∈ 𝑤 ) |
113 |
112
|
exp520 |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → ( 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) → ( 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) → ( 𝑤 ∈ ( PSubSp ‘ 𝐾 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 → 𝑞 ∈ 𝑤 ) ) ) ) ) |
114 |
113
|
rexlimdv |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ∧ 𝑞 ∈ 𝐴 ) → ( ∃ 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) → ( 𝑤 ∈ ( PSubSp ‘ 𝐾 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 → 𝑞 ∈ 𝑤 ) ) ) ) |
115 |
114
|
3expia |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑞 ∈ 𝐴 → ( ∃ 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) → ( 𝑤 ∈ ( PSubSp ‘ 𝐾 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 → 𝑞 ∈ 𝑤 ) ) ) ) ) |
116 |
115
|
impd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑞 ∈ 𝐴 ∧ ∃ 𝑝 ∈ ( 𝑈 ‘ 𝑦 ) 𝑞 ( le ‘ 𝐾 ) ( 𝑝 ( join ‘ 𝐾 ) 𝑧 ) ) → ( 𝑤 ∈ ( PSubSp ‘ 𝐾 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 → 𝑞 ∈ 𝑤 ) ) ) ) |
117 |
92 116
|
sylbid |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑞 ∈ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) → ( 𝑤 ∈ ( PSubSp ‘ 𝐾 ) → ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 → 𝑞 ∈ 𝑤 ) ) ) ) |
118 |
117
|
ralrimdv |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑞 ∈ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) → ∀ 𝑤 ∈ ( PSubSp ‘ 𝐾 ) ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 → 𝑞 ∈ 𝑤 ) ) ) |
119 |
|
simplrr |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → 𝑦 ⊆ 𝐴 ) |
120 |
119 75
|
jca |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) |
121 |
120 33
|
sylib |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) |
122 |
|
vex |
⊢ 𝑞 ∈ V |
123 |
1 47 2 122
|
elpclN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → ( 𝑞 ∈ ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ↔ ∀ 𝑤 ∈ ( PSubSp ‘ 𝐾 ) ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 → 𝑞 ∈ 𝑤 ) ) ) |
124 |
57 121 123
|
syl2anc |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑞 ∈ ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ↔ ∀ 𝑤 ∈ ( PSubSp ‘ 𝐾 ) ( ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝑤 → 𝑞 ∈ 𝑤 ) ) ) |
125 |
118 124
|
sylibrd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑞 ∈ ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) → 𝑞 ∈ ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
126 |
125
|
ssrdv |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ⊆ ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ) |
127 |
82 126
|
eqssd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝑈 ‘ 𝑦 ) ( +𝑃 ‘ 𝐾 ) { 𝑧 } ) ) |
128 |
127 77
|
eqeltrd |
⊢ ( ( ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) ∧ ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ) ∧ ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ 𝑆 ) |
129 |
128
|
exp43 |
⊢ ( ( 𝑦 ∈ Fin ∧ 𝑦 ≠ ∅ ) → ( ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) → ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 → ( 𝑧 ∈ 𝐴 → ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ 𝑆 ) ) ) ) |
130 |
56 129
|
pm2.61dane |
⊢ ( 𝑦 ∈ Fin → ( ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) → ( ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 → ( 𝑧 ∈ 𝐴 → ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ 𝑆 ) ) ) ) |
131 |
130
|
a2d |
⊢ ( 𝑦 ∈ Fin → ( ( ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ) → ( ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑧 ∈ 𝐴 → ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ 𝑆 ) ) ) ) |
132 |
131
|
imp4b |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ) ) → ( ( ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ 𝑆 ) ) |
133 |
35 132
|
syl5bi |
⊢ ( ( 𝑦 ∈ Fin ∧ ( ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ) ) → ( ( 𝐾 ∈ HL ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ 𝑆 ) ) |
134 |
133
|
ex |
⊢ ( 𝑦 ∈ Fin → ( ( ( 𝐾 ∈ HL ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑦 ) ∈ 𝑆 ) → ( ( 𝐾 ∈ HL ∧ ( 𝑦 ∪ { 𝑧 } ) ⊆ 𝐴 ) → ( 𝑈 ‘ ( 𝑦 ∪ { 𝑧 } ) ) ∈ 𝑆 ) ) ) |
135 |
8 13 18 23 27 134
|
findcard2 |
⊢ ( 𝑋 ∈ Fin → ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑋 ) ∈ 𝑆 ) ) |
136 |
135
|
3impib |
⊢ ( ( 𝑋 ∈ Fin ∧ 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ) → ( 𝑈 ‘ 𝑋 ) ∈ 𝑆 ) |
137 |
136
|
3coml |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ⊆ 𝐴 ∧ 𝑋 ∈ Fin ) → ( 𝑈 ‘ 𝑋 ) ∈ 𝑆 ) |