| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							pclfval.a | 
							⊢ 𝐴  =  ( Atoms ‘ 𝐾 )  | 
						
						
							| 2 | 
							
								
							 | 
							pclfval.s | 
							⊢ 𝑆  =  ( PSubSp ‘ 𝐾 )  | 
						
						
							| 3 | 
							
								
							 | 
							pclfval.c | 
							⊢ 𝑈  =  ( PCl ‘ 𝐾 )  | 
						
						
							| 4 | 
							
								
							 | 
							elex | 
							⊢ ( 𝐾  ∈  𝑉  →  𝐾  ∈  V )  | 
						
						
							| 5 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝐾  →  ( Atoms ‘ 𝑘 )  =  ( Atoms ‘ 𝐾 ) )  | 
						
						
							| 6 | 
							
								5 1
							 | 
							eqtr4di | 
							⊢ ( 𝑘  =  𝐾  →  ( Atoms ‘ 𝑘 )  =  𝐴 )  | 
						
						
							| 7 | 
							
								6
							 | 
							pweqd | 
							⊢ ( 𝑘  =  𝐾  →  𝒫  ( Atoms ‘ 𝑘 )  =  𝒫  𝐴 )  | 
						
						
							| 8 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑘  =  𝐾  →  ( PSubSp ‘ 𝑘 )  =  ( PSubSp ‘ 𝐾 ) )  | 
						
						
							| 9 | 
							
								8 2
							 | 
							eqtr4di | 
							⊢ ( 𝑘  =  𝐾  →  ( PSubSp ‘ 𝑘 )  =  𝑆 )  | 
						
						
							| 10 | 
							
								9
							 | 
							rabeqdv | 
							⊢ ( 𝑘  =  𝐾  →  { 𝑦  ∈  ( PSubSp ‘ 𝑘 )  ∣  𝑥  ⊆  𝑦 }  =  { 𝑦  ∈  𝑆  ∣  𝑥  ⊆  𝑦 } )  | 
						
						
							| 11 | 
							
								10
							 | 
							inteqd | 
							⊢ ( 𝑘  =  𝐾  →  ∩  { 𝑦  ∈  ( PSubSp ‘ 𝑘 )  ∣  𝑥  ⊆  𝑦 }  =  ∩  { 𝑦  ∈  𝑆  ∣  𝑥  ⊆  𝑦 } )  | 
						
						
							| 12 | 
							
								7 11
							 | 
							mpteq12dv | 
							⊢ ( 𝑘  =  𝐾  →  ( 𝑥  ∈  𝒫  ( Atoms ‘ 𝑘 )  ↦  ∩  { 𝑦  ∈  ( PSubSp ‘ 𝑘 )  ∣  𝑥  ⊆  𝑦 } )  =  ( 𝑥  ∈  𝒫  𝐴  ↦  ∩  { 𝑦  ∈  𝑆  ∣  𝑥  ⊆  𝑦 } ) )  | 
						
						
							| 13 | 
							
								
							 | 
							df-pclN | 
							⊢ PCl  =  ( 𝑘  ∈  V  ↦  ( 𝑥  ∈  𝒫  ( Atoms ‘ 𝑘 )  ↦  ∩  { 𝑦  ∈  ( PSubSp ‘ 𝑘 )  ∣  𝑥  ⊆  𝑦 } ) )  | 
						
						
							| 14 | 
							
								1
							 | 
							fvexi | 
							⊢ 𝐴  ∈  V  | 
						
						
							| 15 | 
							
								14
							 | 
							pwex | 
							⊢ 𝒫  𝐴  ∈  V  | 
						
						
							| 16 | 
							
								15
							 | 
							mptex | 
							⊢ ( 𝑥  ∈  𝒫  𝐴  ↦  ∩  { 𝑦  ∈  𝑆  ∣  𝑥  ⊆  𝑦 } )  ∈  V  | 
						
						
							| 17 | 
							
								12 13 16
							 | 
							fvmpt | 
							⊢ ( 𝐾  ∈  V  →  ( PCl ‘ 𝐾 )  =  ( 𝑥  ∈  𝒫  𝐴  ↦  ∩  { 𝑦  ∈  𝑆  ∣  𝑥  ⊆  𝑦 } ) )  | 
						
						
							| 18 | 
							
								3 17
							 | 
							eqtrid | 
							⊢ ( 𝐾  ∈  V  →  𝑈  =  ( 𝑥  ∈  𝒫  𝐴  ↦  ∩  { 𝑦  ∈  𝑆  ∣  𝑥  ⊆  𝑦 } ) )  | 
						
						
							| 19 | 
							
								4 18
							 | 
							syl | 
							⊢ ( 𝐾  ∈  𝑉  →  𝑈  =  ( 𝑥  ∈  𝒫  𝐴  ↦  ∩  { 𝑦  ∈  𝑆  ∣  𝑥  ⊆  𝑦 } ) )  |