Description: The projective subspace closure of a projective subspace is itself. (Contributed by NM, 8-Sep-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | pclid.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| pclid.c | ⊢ 𝑈 = ( PCl ‘ 𝐾 ) | ||
| Assertion | pclidN | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑈 ‘ 𝑋 ) = 𝑋 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclid.s | ⊢ 𝑆 = ( PSubSp ‘ 𝐾 ) | |
| 2 | pclid.c | ⊢ 𝑈 = ( PCl ‘ 𝐾 ) | |
| 3 | eqid | ⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) | |
| 4 | 3 1 | psubssat | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) |
| 5 | 3 1 2 | pclvalN | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ ( Atoms ‘ 𝐾 ) ) → ( 𝑈 ‘ 𝑋 ) = ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) |
| 6 | 4 5 | syldan | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑈 ‘ 𝑋 ) = ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } ) |
| 7 | intmin | ⊢ ( 𝑋 ∈ 𝑆 → ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } = 𝑋 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆 ) → ∩ { 𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦 } = 𝑋 ) |
| 9 | 6 8 | eqtrd | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝑆 ) → ( 𝑈 ‘ 𝑋 ) = 𝑋 ) |