Step |
Hyp |
Ref |
Expression |
1 |
|
elin |
⊢ ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ↔ ( 𝑝 ∈ ( 1 ... 𝐴 ) ∧ 𝑝 ∈ ℙ ) ) |
2 |
1
|
baib |
⊢ ( 𝑝 ∈ ( 1 ... 𝐴 ) → ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ↔ 𝑝 ∈ ℙ ) ) |
3 |
2
|
ifbid |
⊢ ( 𝑝 ∈ ( 1 ... 𝐴 ) → if ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) , ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) , 0 ) = if ( 𝑝 ∈ ℙ , ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) , 0 ) ) |
4 |
|
fvif |
⊢ ( log ‘ if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ) = if ( 𝑝 ∈ ℙ , ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) , ( log ‘ 1 ) ) |
5 |
|
log1 |
⊢ ( log ‘ 1 ) = 0 |
6 |
|
ifeq2 |
⊢ ( ( log ‘ 1 ) = 0 → if ( 𝑝 ∈ ℙ , ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) , ( log ‘ 1 ) ) = if ( 𝑝 ∈ ℙ , ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) , 0 ) ) |
7 |
5 6
|
ax-mp |
⊢ if ( 𝑝 ∈ ℙ , ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) , ( log ‘ 1 ) ) = if ( 𝑝 ∈ ℙ , ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) , 0 ) |
8 |
4 7
|
eqtri |
⊢ ( log ‘ if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ) = if ( 𝑝 ∈ ℙ , ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) , 0 ) |
9 |
3 8
|
eqtr4di |
⊢ ( 𝑝 ∈ ( 1 ... 𝐴 ) → if ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) , ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) , 0 ) = ( log ‘ if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ) ) |
10 |
9
|
sumeq2i |
⊢ Σ 𝑝 ∈ ( 1 ... 𝐴 ) if ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) , ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) , 0 ) = Σ 𝑝 ∈ ( 1 ... 𝐴 ) ( log ‘ if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ) |
11 |
|
inss1 |
⊢ ( ( 1 ... 𝐴 ) ∩ ℙ ) ⊆ ( 1 ... 𝐴 ) |
12 |
|
simpr |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) |
13 |
12
|
elin1d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ( 1 ... 𝐴 ) ) |
14 |
|
elfznn |
⊢ ( 𝑝 ∈ ( 1 ... 𝐴 ) → 𝑝 ∈ ℕ ) |
15 |
13 14
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℕ ) |
16 |
12
|
elin2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℙ ) |
17 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → 𝐴 ∈ ℕ ) |
18 |
16 17
|
pccld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
19 |
15 18
|
nnexpcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ∈ ℕ ) |
20 |
19
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ∈ ℝ+ ) |
21 |
20
|
relogcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ∈ ℝ ) |
22 |
21
|
recnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ∈ ℂ ) |
23 |
22
|
ralrimiva |
⊢ ( 𝐴 ∈ ℕ → ∀ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ∈ ℂ ) |
24 |
|
fzfi |
⊢ ( 1 ... 𝐴 ) ∈ Fin |
25 |
24
|
olci |
⊢ ( ( 1 ... 𝐴 ) ⊆ ( ℤ≥ ‘ 1 ) ∨ ( 1 ... 𝐴 ) ∈ Fin ) |
26 |
|
sumss2 |
⊢ ( ( ( ( ( 1 ... 𝐴 ) ∩ ℙ ) ⊆ ( 1 ... 𝐴 ) ∧ ∀ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ∈ ℂ ) ∧ ( ( 1 ... 𝐴 ) ⊆ ( ℤ≥ ‘ 1 ) ∨ ( 1 ... 𝐴 ) ∈ Fin ) ) → Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = Σ 𝑝 ∈ ( 1 ... 𝐴 ) if ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) , ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) , 0 ) ) |
27 |
25 26
|
mpan2 |
⊢ ( ( ( ( 1 ... 𝐴 ) ∩ ℙ ) ⊆ ( 1 ... 𝐴 ) ∧ ∀ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) ∈ ℂ ) → Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = Σ 𝑝 ∈ ( 1 ... 𝐴 ) if ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) , ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) , 0 ) ) |
28 |
11 23 27
|
sylancr |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = Σ 𝑝 ∈ ( 1 ... 𝐴 ) if ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) , ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) , 0 ) ) |
29 |
15
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → 𝑝 ∈ ℝ+ ) |
30 |
18
|
nn0zd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( 𝑝 pCnt 𝐴 ) ∈ ℤ ) |
31 |
|
relogexp |
⊢ ( ( 𝑝 ∈ ℝ+ ∧ ( 𝑝 pCnt 𝐴 ) ∈ ℤ ) → ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) ) |
32 |
29 30 31
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ) → ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) ) |
33 |
32
|
sumeq2dv |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) = Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) ) |
34 |
28 33
|
eqtr3d |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑝 ∈ ( 1 ... 𝐴 ) if ( 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) , ( log ‘ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) , 0 ) = Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) ) |
35 |
14
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( 1 ... 𝐴 ) ) → 𝑝 ∈ ℕ ) |
36 |
|
eleq1w |
⊢ ( 𝑛 = 𝑝 → ( 𝑛 ∈ ℙ ↔ 𝑝 ∈ ℙ ) ) |
37 |
|
id |
⊢ ( 𝑛 = 𝑝 → 𝑛 = 𝑝 ) |
38 |
|
oveq1 |
⊢ ( 𝑛 = 𝑝 → ( 𝑛 pCnt 𝐴 ) = ( 𝑝 pCnt 𝐴 ) ) |
39 |
37 38
|
oveq12d |
⊢ ( 𝑛 = 𝑝 → ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) = ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ) |
40 |
36 39
|
ifbieq1d |
⊢ ( 𝑛 = 𝑝 → if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) = if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ) |
41 |
40
|
fveq2d |
⊢ ( 𝑛 = 𝑝 → ( log ‘ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) = ( log ‘ if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ) ) |
42 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( log ‘ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( log ‘ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) ) |
43 |
|
fvex |
⊢ ( log ‘ if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ) ∈ V |
44 |
41 42 43
|
fvmpt |
⊢ ( 𝑝 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ ( log ‘ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) ) ‘ 𝑝 ) = ( log ‘ if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ) ) |
45 |
35 44
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( 1 ... 𝐴 ) ) → ( ( 𝑛 ∈ ℕ ↦ ( log ‘ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) ) ‘ 𝑝 ) = ( log ‘ if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ) ) |
46 |
|
elnnuz |
⊢ ( 𝐴 ∈ ℕ ↔ 𝐴 ∈ ( ℤ≥ ‘ 1 ) ) |
47 |
46
|
biimpi |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ( ℤ≥ ‘ 1 ) ) |
48 |
35
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( 1 ... 𝐴 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℕ ) |
49 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( 1 ... 𝐴 ) ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℙ ) |
50 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( 1 ... 𝐴 ) ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℕ ) |
51 |
49 50
|
pccld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( 1 ... 𝐴 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 pCnt 𝐴 ) ∈ ℕ0 ) |
52 |
48 51
|
nnexpcld |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( 1 ... 𝐴 ) ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ∈ ℕ ) |
53 |
|
1nn |
⊢ 1 ∈ ℕ |
54 |
53
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( 1 ... 𝐴 ) ) ∧ ¬ 𝑝 ∈ ℙ ) → 1 ∈ ℕ ) |
55 |
52 54
|
ifclda |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( 1 ... 𝐴 ) ) → if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ∈ ℕ ) |
56 |
55
|
nnrpd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( 1 ... 𝐴 ) ) → if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ∈ ℝ+ ) |
57 |
56
|
relogcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( 1 ... 𝐴 ) ) → ( log ‘ if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ) ∈ ℝ ) |
58 |
57
|
recnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( 1 ... 𝐴 ) ) → ( log ‘ if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ) ∈ ℂ ) |
59 |
45 47 58
|
fsumser |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑝 ∈ ( 1 ... 𝐴 ) ( log ‘ if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( log ‘ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) ) ) ‘ 𝐴 ) ) |
60 |
|
rpmulcl |
⊢ ( ( 𝑝 ∈ ℝ+ ∧ 𝑚 ∈ ℝ+ ) → ( 𝑝 · 𝑚 ) ∈ ℝ+ ) |
61 |
60
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝑝 ∈ ℝ+ ∧ 𝑚 ∈ ℝ+ ) ) → ( 𝑝 · 𝑚 ) ∈ ℝ+ ) |
62 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) |
63 |
|
ovex |
⊢ ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) ∈ V |
64 |
|
1ex |
⊢ 1 ∈ V |
65 |
63 64
|
ifex |
⊢ if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ∈ V |
66 |
40 62 65
|
fvmpt |
⊢ ( 𝑝 ∈ ℕ → ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) ‘ 𝑝 ) = if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ) |
67 |
35 66
|
syl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( 1 ... 𝐴 ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) ‘ 𝑝 ) = if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ) |
68 |
67 56
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( 1 ... 𝐴 ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) ‘ 𝑝 ) ∈ ℝ+ ) |
69 |
|
relogmul |
⊢ ( ( 𝑝 ∈ ℝ+ ∧ 𝑚 ∈ ℝ+ ) → ( log ‘ ( 𝑝 · 𝑚 ) ) = ( ( log ‘ 𝑝 ) + ( log ‘ 𝑚 ) ) ) |
70 |
69
|
adantl |
⊢ ( ( 𝐴 ∈ ℕ ∧ ( 𝑝 ∈ ℝ+ ∧ 𝑚 ∈ ℝ+ ) ) → ( log ‘ ( 𝑝 · 𝑚 ) ) = ( ( log ‘ 𝑝 ) + ( log ‘ 𝑚 ) ) ) |
71 |
67
|
fveq2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( 1 ... 𝐴 ) ) → ( log ‘ ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) ‘ 𝑝 ) ) = ( log ‘ if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ) ) |
72 |
71 45
|
eqtr4d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑝 ∈ ( 1 ... 𝐴 ) ) → ( log ‘ ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) ‘ 𝑝 ) ) = ( ( 𝑛 ∈ ℕ ↦ ( log ‘ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) ) ‘ 𝑝 ) ) |
73 |
61 68 47 70 72
|
seqhomo |
⊢ ( 𝐴 ∈ ℕ → ( log ‘ ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) ) ‘ 𝐴 ) ) = ( seq 1 ( + , ( 𝑛 ∈ ℕ ↦ ( log ‘ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) ) ) ‘ 𝐴 ) ) |
74 |
62
|
pcprod |
⊢ ( 𝐴 ∈ ℕ → ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) ) ‘ 𝐴 ) = 𝐴 ) |
75 |
74
|
fveq2d |
⊢ ( 𝐴 ∈ ℕ → ( log ‘ ( seq 1 ( · , ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ ℙ , ( 𝑛 ↑ ( 𝑛 pCnt 𝐴 ) ) , 1 ) ) ) ‘ 𝐴 ) ) = ( log ‘ 𝐴 ) ) |
76 |
59 73 75
|
3eqtr2d |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑝 ∈ ( 1 ... 𝐴 ) ( log ‘ if ( 𝑝 ∈ ℙ , ( 𝑝 ↑ ( 𝑝 pCnt 𝐴 ) ) , 1 ) ) = ( log ‘ 𝐴 ) ) |
77 |
10 34 76
|
3eqtr3a |
⊢ ( 𝐴 ∈ ℕ → Σ 𝑝 ∈ ( ( 1 ... 𝐴 ) ∩ ℙ ) ( ( 𝑝 pCnt 𝐴 ) · ( log ‘ 𝑝 ) ) = ( log ‘ 𝐴 ) ) |